-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
136 lines (117 loc) · 4.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import configargparse
from pathlib import Path
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
import logging
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
from utils.utils import (
argparse_summary,
get_class_by_path,
)
from utils.configargparse_arguments import build_configargparser
from datetime import datetime
logging.disable(logging.WARNING)
#SEED = 2334
#torch.manual_seed(SEED)
#np.random.seed(SEED)
def train(hparams, ModuleClass, ModelClass, DatasetClass, logger):
"""
Main training routine specific for this project
:param hparams:
"""
# ------------------------
# 1 INIT LIGHTNING MODEL
# ------------------------
# load model
model = ModelClass(hparams=hparams)
# load dataset
dataset = DatasetClass(hparams=hparams)
# load module
module = ModuleClass(hparams, model, dataset)
# ------------------------
# 3 INIT TRAINER --> continues training
# ------------------------
checkpoint_callback = ModelCheckpoint(
dirpath=f"{hparams.output_path}/checkpoints/",
save_top_k=hparams.save_top_k,
verbose=True,
monitor=hparams.early_stopping_metric,
mode='max',
prefix=hparams.name,
filename=f'{{epoch}}-{{{hparams.early_stopping_metric}:.2f}}'
)
early_stop_callback = EarlyStopping(
monitor=hparams.early_stopping_metric,
min_delta=0.00,
patience=3,
mode='max')
trainer = Trainer(
gpus=hparams.gpus,
logger=logger,
fast_dev_run=hparams.fast_dev_run,
min_epochs=hparams.min_epochs,
max_epochs=hparams.max_epochs,
checkpoint_callback=checkpoint_callback,
resume_from_checkpoint=hparams.resume_from_checkpoint,
callbacks=[early_stop_callback],
weights_summary='full',
num_sanity_val_steps=hparams.num_sanity_val_steps,
log_every_n_steps=hparams.log_every_n_steps
)
# ------------------------
# 4 START TRAINING
# ------------------------
trainer.fit(module)
print(
f"Best: {checkpoint_callback.best_model_score} | monitor: {checkpoint_callback.monitor} | path: {checkpoint_callback.best_model_path}"
f"\nTesting..."
)
trainer.test(ckpt_path=checkpoint_callback.best_model_path)
if __name__ == "__main__":
# ------------------------
# TRAINING ARGUMENTS
# ------------------------
# these are project-wide arguments
root_dir = Path(__file__).parent
parser = configargparse.ArgParser(
config_file_parser_class=configargparse.YAMLConfigFileParser)
parser.add('-c', is_config_file=True, help='config file path')
parser, hparams = build_configargparser(parser)
# each LightningModule defines arguments relevant to it
# ------------------------
# LOAD MODULE
# ------------------------
module_path = f"modules.{hparams.module}"
ModuleClass = get_class_by_path(module_path)
parser = ModuleClass.add_module_specific_args(parser)
# ------------------------
# LOAD MODEL
# ------------------------
model_path = f"models.{hparams.model}"
ModelClass = get_class_by_path(model_path)
parser = ModelClass.add_model_specific_args(parser)
# ------------------------
# LOAD DATASET
# ------------------------
dataset_path = f"datasets.{hparams.dataset}"
DatasetClass = get_class_by_path(dataset_path)
parser = DatasetClass.add_dataset_specific_args(parser)
# ------------------------
# PRINT PARAMS & INIT LOGGER
# ------------------------
hparams = parser.parse_args()
# setup logging
exp_name = (hparams.module.split(".")[-1] + "_" + hparams.dataset.split(".")[-1] + "_" + hparams.model.replace(".",
"_"))
date_str = datetime.now().strftime("%y%m%d-%H%M%S_")
hparams.name = date_str + exp_name
hparams.output_path = Path(hparams.output_path).absolute() / hparams.name
tb_logger = TensorBoardLogger(hparams.output_path, name='tb')
wandb_logger = WandbLogger(name = hparams.name, project="tecno")
argparse_summary(hparams, parser)
print('Output path: ', hparams.output_path)
loggers = [tb_logger, wandb_logger]
# ---------------------
# RUN TRAINING
# ---------------------
train(hparams, ModuleClass, ModelClass, DatasetClass, loggers)