-
-
Notifications
You must be signed in to change notification settings - Fork 153
/
train.py
221 lines (172 loc) · 8.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import json
import time
import torch
import argparse
import numpy as np
from multiprocessing import cpu_count
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from collections import OrderedDict, defaultdict
from ptb import PTB
from utils import to_var, idx2word, expierment_name
from model import SentenceVAE
def main(args):
ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime())
splits = ['train', 'valid'] + (['test'] if args.test else [])
datasets = OrderedDict()
for split in splits:
datasets[split] = PTB(
data_dir=args.data_dir,
split=split,
create_data=args.create_data,
max_sequence_length=args.max_sequence_length,
min_occ=args.min_occ
)
params = dict(
vocab_size=datasets['train'].vocab_size,
sos_idx=datasets['train'].sos_idx,
eos_idx=datasets['train'].eos_idx,
pad_idx=datasets['train'].pad_idx,
unk_idx=datasets['train'].unk_idx,
max_sequence_length=args.max_sequence_length,
embedding_size=args.embedding_size,
rnn_type=args.rnn_type,
hidden_size=args.hidden_size,
word_dropout=args.word_dropout,
embedding_dropout=args.embedding_dropout,
latent_size=args.latent_size,
num_layers=args.num_layers,
bidirectional=args.bidirectional
)
model = SentenceVAE(**params)
if torch.cuda.is_available():
model = model.cuda()
print(model)
if args.tensorboard_logging:
writer = SummaryWriter(os.path.join(args.logdir, expierment_name(args, ts)))
writer.add_text("model", str(model))
writer.add_text("args", str(args))
writer.add_text("ts", ts)
save_model_path = os.path.join(args.save_model_path, ts)
os.makedirs(save_model_path)
with open(os.path.join(save_model_path, 'model_params.json'), 'w') as f:
json.dump(params, f, indent=4)
def kl_anneal_function(anneal_function, step, k, x0):
if anneal_function == 'logistic':
return float(1/(1+np.exp(-k*(step-x0))))
elif anneal_function == 'linear':
return min(1, step/x0)
NLL = torch.nn.NLLLoss(ignore_index=datasets['train'].pad_idx, reduction='sum')
def loss_fn(logp, target, length, mean, logv, anneal_function, step, k, x0):
# cut-off unnecessary padding from target, and flatten
target = target[:, :torch.max(length).item()].contiguous().view(-1)
logp = logp.view(-1, logp.size(2))
# Negative Log Likelihood
NLL_loss = NLL(logp, target)
# KL Divergence
KL_loss = -0.5 * torch.sum(1 + logv - mean.pow(2) - logv.exp())
KL_weight = kl_anneal_function(anneal_function, step, k, x0)
return NLL_loss, KL_loss, KL_weight
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.Tensor
step = 0
for epoch in range(args.epochs):
for split in splits:
data_loader = DataLoader(
dataset=datasets[split],
batch_size=args.batch_size,
shuffle=split=='train',
num_workers=cpu_count(),
pin_memory=torch.cuda.is_available()
)
tracker = defaultdict(tensor)
# Enable/Disable Dropout
if split == 'train':
model.train()
else:
model.eval()
for iteration, batch in enumerate(data_loader):
batch_size = batch['input'].size(0)
for k, v in batch.items():
if torch.is_tensor(v):
batch[k] = to_var(v)
# Forward pass
logp, mean, logv, z = model(batch['input'], batch['length'])
# loss calculation
NLL_loss, KL_loss, KL_weight = loss_fn(logp, batch['target'],
batch['length'], mean, logv, args.anneal_function, step, args.k, args.x0)
loss = (NLL_loss + KL_weight * KL_loss) / batch_size
# backward + optimization
if split == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
step += 1
# bookkeepeing
tracker['ELBO'] = torch.cat((tracker['ELBO'], loss.data.view(1, -1)), dim=0)
if args.tensorboard_logging:
writer.add_scalar("%s/ELBO" % split.upper(), loss.item(), epoch*len(data_loader) + iteration)
writer.add_scalar("%s/NLL Loss" % split.upper(), NLL_loss.item() / batch_size,
epoch*len(data_loader) + iteration)
writer.add_scalar("%s/KL Loss" % split.upper(), KL_loss.item() / batch_size,
epoch*len(data_loader) + iteration)
writer.add_scalar("%s/KL Weight" % split.upper(), KL_weight,
epoch*len(data_loader) + iteration)
if iteration % args.print_every == 0 or iteration+1 == len(data_loader):
print("%s Batch %04d/%i, Loss %9.4f, NLL-Loss %9.4f, KL-Loss %9.4f, KL-Weight %6.3f"
% (split.upper(), iteration, len(data_loader)-1, loss.item(), NLL_loss.item()/batch_size,
KL_loss.item()/batch_size, KL_weight))
if split == 'valid':
if 'target_sents' not in tracker:
tracker['target_sents'] = list()
tracker['target_sents'] += idx2word(batch['target'].data, i2w=datasets['train'].get_i2w(),
pad_idx=datasets['train'].pad_idx)
tracker['z'] = torch.cat((tracker['z'], z.data), dim=0)
print("%s Epoch %02d/%i, Mean ELBO %9.4f" % (split.upper(), epoch, args.epochs, tracker['ELBO'].mean()))
if args.tensorboard_logging:
writer.add_scalar("%s-Epoch/ELBO" % split.upper(), torch.mean(tracker['ELBO']), epoch)
# save a dump of all sentences and the encoded latent space
if split == 'valid':
dump = {'target_sents': tracker['target_sents'], 'z': tracker['z'].tolist()}
if not os.path.exists(os.path.join('dumps', ts)):
os.makedirs('dumps/'+ts)
with open(os.path.join('dumps/'+ts+'/valid_E%i.json' % epoch), 'w') as dump_file:
json.dump(dump,dump_file)
# save checkpoint
if split == 'train':
checkpoint_path = os.path.join(save_model_path, "E%i.pytorch" % epoch)
torch.save(model.state_dict(), checkpoint_path)
print("Model saved at %s" % checkpoint_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='data')
parser.add_argument('--create_data', action='store_true')
parser.add_argument('--max_sequence_length', type=int, default=60)
parser.add_argument('--min_occ', type=int, default=1)
parser.add_argument('--test', action='store_true')
parser.add_argument('-ep', '--epochs', type=int, default=10)
parser.add_argument('-bs', '--batch_size', type=int, default=32)
parser.add_argument('-lr', '--learning_rate', type=float, default=0.001)
parser.add_argument('-eb', '--embedding_size', type=int, default=300)
parser.add_argument('-rnn', '--rnn_type', type=str, default='gru')
parser.add_argument('-hs', '--hidden_size', type=int, default=256)
parser.add_argument('-nl', '--num_layers', type=int, default=1)
parser.add_argument('-bi', '--bidirectional', action='store_true')
parser.add_argument('-ls', '--latent_size', type=int, default=16)
parser.add_argument('-wd', '--word_dropout', type=float, default=0)
parser.add_argument('-ed', '--embedding_dropout', type=float, default=0.5)
parser.add_argument('-af', '--anneal_function', type=str, default='logistic')
parser.add_argument('-k', '--k', type=float, default=0.0025)
parser.add_argument('-x0', '--x0', type=int, default=2500)
parser.add_argument('-v', '--print_every', type=int, default=50)
parser.add_argument('-tb', '--tensorboard_logging', action='store_true')
parser.add_argument('-log', '--logdir', type=str, default='logs')
parser.add_argument('-bin', '--save_model_path', type=str, default='bin')
args = parser.parse_args()
args.rnn_type = args.rnn_type.lower()
args.anneal_function = args.anneal_function.lower()
assert args.rnn_type in ['rnn', 'lstm', 'gru']
assert args.anneal_function in ['logistic', 'linear']
assert 0 <= args.word_dropout <= 1
main(args)