Skip to content

[BUG] T.gemm() fails on SM75 (Turing/T4) with "SM80_16x8x16_F32F16F16F32_TN without CUTE_ARCH_MMA_SM80_ENABLED" #1529

@fjralf

Description

@fjralf

Required prerequisites

What version of TileLang are you using?

0.1.7.post1

System information

PyTorch version: 2.9.0+cu126
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version: Could not collect
CMake version: version 3.31.10
Libc version: glibc-2.35

Python version: 3.12.12 (main, Oct 10 2025, 08:52:57) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.6.105+-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.5.82
CUDA_MODULE_LOADING set to:
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family: 6
Model: 79
Thread(s) per core: 2
Core(s) per socket: 1
Socket(s): 1
Stepping: 0
BogoMIPS: 4399.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32 KiB (1 instance)
L1i cache: 32 KiB (1 instance)
L2 cache: 256 KiB (1 instance)
L3 cache: 55 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0,1
Vulnerability Gather data sampling: Not affected
Vulnerability Indirect target selection: Vulnerable
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable; SMT Host state unknown
Vulnerability Meltdown: Vulnerable
Vulnerability Mmio stale data: Vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable
Vulnerability Srbds: Not affected
Vulnerability Tsa: Not affected
Vulnerability Tsx async abort: Vulnerable

Versions of relevant libraries:
[pip3] intel-cmplr-lib-ur==2025.3.1
[pip3] intel-openmp==2025.3.1
[pip3] mkl==2025.3.0
[pip3] numpy==2.0.2
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] nvtx==0.2.14
[pip3] onemkl-license==2025.3.0
[pip3] optree==0.18.0
[pip3] tbb==2022.3.0
[pip3] tcmlib==1.4.1
[pip3] torch==2.9.0+cu126
[pip3] torch_c_dlpack_ext==0.1.4
[pip3] torchao==0.10.0
[pip3] torchaudio==2.9.0+cu126
[pip3] torchdata==0.11.0
[pip3] torchsummary==1.5.1
[pip3] torchtune==0.6.1
[pip3] torchvision==0.24.0+cu126
[pip3] triton==3.5.0
[pip3] umf==1.0.2
[conda] Could not collect

Problem description

when using T.gemm() on GPU SM132 (H200), everything runs normally as usual, but when using colab SM75 (Tesla T4) with target="auto", the compiled kernel fails at runtime with a CUDA assertion error. the error indicates that SM80 instructions were generated for the SM75.

Reproducible example code

The Python snippets:

import torch
import tilelang
import tilelang.language as T

tilelang.set_log_level("WARNING")

def create_gemm(N: int, K: int, dtype: str):
    M = T.symbolic("M")
    
    @T.prim_func
    def kernel(
        A: T.Tensor[(M, K), dtype],
        B: T.Tensor[(N, K), dtype],
        C: T.Tensor[(M, N), dtype],
    ):
        with T.Kernel(T.ceildiv(N, 64), T.ceildiv(M, 64), threads=128) as (bx, by):
            A_sh = T.alloc_shared((64, 32), dtype)
            B_sh = T.alloc_shared((64, 32), dtype)
            C_sh = T.alloc_shared((64, 64), dtype)
            C_lo = T.alloc_fragment((64, 64), "float32")

            T.use_swizzle(panel_size=4)
            T.clear(C_lo)

            for k in T.Pipelined(T.ceildiv(K, 32), num_stages=2):
                T.copy(A[by * 64, k * 32], A_sh)
                T.copy(B[bx * 64, k * 32], B_sh)
                T.gemm(A_sh, B_sh, C_lo, transpose_B=True)

            T.copy(C_lo, C_sh)
            T.copy(C_sh, C[by * 64, bx * 64])

    return kernel

# Compile with auto target detection
kernel_func = create_gemm(256, 256, "float16")
compiled = tilelang.compile(kernel_func, target="auto")

# Test
device = "cuda"
a = torch.randn(128, 256, device=device, dtype=torch.float16)
b = torch.randn(256, 256, device=device, dtype=torch.float16)
c = torch.empty(128, 256, device=device, dtype=torch.float16)

compiled(a, b, c)
torch.cuda.synchronize()  # <-- FAILS HERE

print("Success!")

Traceback

/usr/local/lib/python3.12/dist-packages/tilelang/3rdparty/cutlass/include/cute/arch/mma_sm80.hpp:183: static void cute::SM80_16x8x16_F32F16F16F32_TN::fma(float &, float &, float &, float &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const float &, const float &, const float &, const float &): block: [3,0,0], thread: [127,0,0] Assertion `0 && "Attempting to use SM80_16x8x16_F32F16F16F32_TN without CUTE_ARCH_MMA_SM80_ENABLED"` failed.
Traceback (most recent call last):
  File "/content/test/l.py", line 47, in <module>
    torch.cuda.synchronize()  # <-- FAILS HERE
    ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/torch/cuda/__init__.py", line 1083, in synchronize
    return torch._C._cuda_synchronize()
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
torch.AcceleratorError: CUDA error: device-side assert triggered
Search for `cudaErrorAssert' in https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html for more information.
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Expected behavior

TileLang must do one of the following:

  1. generate code that is compatible with SM75 (using the mma.sync instruction available in Turing), or
  2. display a clear error at compile time
    indicating that T.gemm() requires a GPU SM80+.

Additional context

from the error, it appears the CUTLASS/CuTe backend is selecting SM80 MMA instructions regardless of the target GPU architecture. The target="auto" should detect SM75 and either:

  • Use SM75-compatible WMMA/MMA instructions
  • Fall back to non-Tensor Core GEMM
  • Reject the compilation with a clear error message

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workinghelp wantedExtra attention is neededneed v100

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions