Skip to content

Commit 0a81d54

Browse files
committed
chore: bump
1 parent 53169a5 commit 0a81d54

File tree

25 files changed

+138
-127
lines changed

25 files changed

+138
-127
lines changed

src/Algebra/Group/Ab/Free.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ open is-group-hom
5454
module _ {ℓ} (T : Type ℓ) (t-set : is-set T) where
5555
function→free-ab-hom : (G : Abelian-group ℓ) → (T → ⌞ G ⌟) → Ab.Hom (Free-abelian T) G
5656
function→free-ab-hom G fn = morp where
57-
private module G = Abelian-group-on (G .snd)
57+
module G = Abelian-group-on (G .snd)
5858
go₀ : Free-group T → ⌞ G ⌟
5959
go₀ = fold-free-group {G = G .fst , G.Abelian→Group-on} fn .hom
6060

src/Algebra/Quasigroup.lagda.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -245,7 +245,7 @@ is-right-quasigroup-hom-is-prop {T = T} =
245245
Iso→is-hlevel! 1 eqv
246246
where
247247
open Right-quasigroup-on T
248-
private unquoteDecl eqv = declare-record-iso eqv (quote is-right-quasigroup-hom)
248+
unquoteDecl eqv = declare-record-iso eqv (quote is-right-quasigroup-hom)
249249
250250
instance
251251
H-Level-is-right-quasigroup-hom
@@ -424,7 +424,7 @@ is-left-quasigroup≃op-is-right-quasigroup =
424424
let open is-left-quasigroup ⋆-left-quasi in
425425
Iso.injective eqv (refl ,ₚ prop!))
426426
where
427-
private unquoteDecl eqv = declare-record-iso eqv (quote is-left-quasigroup)
427+
unquoteDecl eqv = declare-record-iso eqv (quote is-left-quasigroup)
428428
```
429429
</details>
430430

@@ -537,7 +537,7 @@ is-left-quasigroup-hom-is-prop {T = T} =
537537
Iso→is-hlevel! 1 eqv
538538
where
539539
open Left-quasigroup-on T
540-
private unquoteDecl eqv = declare-record-iso eqv (quote is-left-quasigroup-hom)
540+
unquoteDecl eqv = declare-record-iso eqv (quote is-left-quasigroup-hom)
541541
542542
instance
543543
H-Level-is-left-quasigroup-hom
@@ -771,7 +771,7 @@ is-quasigroup-hom-is-prop {T = T} =
771771
Iso→is-hlevel! 1 eqv
772772
where
773773
open Quasigroup-on T
774-
private unquoteDecl eqv = declare-record-iso eqv (quote is-quasigroup-hom)
774+
unquoteDecl eqv = declare-record-iso eqv (quote is-quasigroup-hom)
775775
776776
instance
777777
H-Level-is-quasigroup-hom

src/Algebra/Ring/Module/Multilinear.lagda.md

Lines changed: 22 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -174,29 +174,28 @@ Multilinear-maps
174174
{N : Module R ℓn}
175175
→ Module-on R (Multilinear-map n Ms N)
176176
Multilinear-maps {n = n} {Ms = Ms} {N = N} = to-module-on mk where
177-
private
178-
module Ms i = Module-on (Ms i .snd)
179-
module N = Module-on (N .snd)
180-
instance
181-
_ = module-notation N
182-
_ : ∀ {i : Fin n} → Module-notation R ⌞ Ms i ⌟
183-
_ = module-notation (Ms _)
184-
185-
-- Normally there would be no way in hell these helpers would ever
186-
-- be useful... except this module needs lossy-unification for
187-
-- performance reasonsl so we might as well abuse it for style!
188-
_⟨_⟩
189-
: Multilinear-map n Ms N
190-
→ {_ : Πᶠ (λ i → ⌞ Ms i ⌟)} {i : Fin n} → ⌞ Ms i ⌟ → ⌞ N ⌟
191-
_⟨_⟩ f {xs} {i} x = applyᶠ (f .map) (updateₚ xs i x)
192-
193-
_⟨_⟩ᵤ
194-
: ∀ {n ℓ'} {ℓ : Fin n → Level} {P : (i : Fin n) → Type (ℓ i)} {X : Type ℓ'}
195-
→ Arrᶠ P X → {_ : Πᶠ P} {i : Fin n} → P i → X
196-
_⟨_⟩ᵤ f {xs} {i} x = applyᶠ f (updateₚ xs i x)
197-
198-
infix 300 _⟨_⟩
199-
infix 300 _⟨_⟩ᵤ
177+
module Ms i = Module-on (Ms i .snd)
178+
module N = Module-on (N .snd)
179+
instance
180+
_ = module-notation N
181+
_ : ∀ {i : Fin n} → Module-notation R ⌞ Ms i ⌟
182+
_ = module-notation (Ms _)
183+
184+
-- Normally there would be no way in hell these helpers would ever
185+
-- be useful... except this module needs lossy-unification for
186+
-- performance reasonsl so we might as well abuse it for style!
187+
_⟨_⟩
188+
: Multilinear-map n Ms N
189+
→ {_ : Πᶠ (λ i → ⌞ Ms i ⌟)} {i : Fin n} → ⌞ Ms i ⌟ → ⌞ N ⌟
190+
_⟨_⟩ f {xs} {i} x = applyᶠ (f .map) (updateₚ xs i x)
191+
192+
_⟨_⟩ᵤ
193+
: ∀ {n ℓ'} {ℓ : Fin n → Level} {P : (i : Fin n) → Type (ℓ i)} {X : Type ℓ'}
194+
→ Arrᶠ P X → {_ : Πᶠ P} {i : Fin n} → P i → X
195+
_⟨_⟩ᵤ f {xs} {i} x = applyᶠ f (updateₚ xs i x)
196+
197+
infix 300 _⟨_⟩
198+
infix 300 _⟨_⟩ᵤ
200199
```
201200
-->
202201

src/Algebra/Ring/Solver.agda

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -448,8 +448,9 @@ module Reflection where
448448
pattern group-field field-name cring args =
449449
def field-name
450450
(is-group-args
451-
(def (quote is-ring.+-group)
452-
(is-ring-args (ring-field (quote Ring-on.has-is-ring) cring []) []))
451+
(def (quote (is-abelian-group.has-is-group))
452+
(_ hm∷ _ hm∷ _ hm∷ def (quote is-ring.+-group)
453+
(is-ring-args (ring-field (quote Ring-on.has-is-ring) cring []) []) v∷ []))
453454
args)
454455

455456
mk-cring-args : Term List (Arg Term) List (Arg Term)
@@ -458,8 +459,8 @@ module Reflection where
458459
pattern “1” cring = ring-field (quote Ring-on.1r) cring []
459460
pattern “*” cring x y = ring-field (quote Ring-on._*_) cring (x v∷ y v∷ [])
460461
pattern “+” cring x y = ring-field (quote Ring-on._+_) cring (x v∷ y v∷ [])
461-
pattern “0” cring = group-field (quote is-abelian-group.1g) cring []
462-
pattern “-” cring x = group-field (quote is-abelian-group.inverse) cring (x v∷ [])
462+
pattern “0” cring = group-field (quote is-group.unit) cring []
463+
pattern “-” cring x = group-field (quote is-group.inverse) cring (x v∷ [])
463464

464465
“expand” : Term Term Term Term
465466
“expand” cring p env = def (quote Impl.expand) (mk-cring-args cring (unknown h∷ p v∷ env v∷ []))
@@ -498,9 +499,7 @@ module Reflection where
498499
dont-reduce : List Name
499500
dont-reduce =
500501
quote Number.fromNat ∷
501-
quote is-abelian-group.1g ∷
502502
quote Ring-on.1r ∷
503-
quote is-abelian-group.inverse ∷
504503
quote Ring-on._*_ ∷
505504
quote Ring-on._+_ ∷
506505
[]

src/Cat/Bi/Diagram/Monad.lagda.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -109,7 +109,7 @@ module _ {o ℓ} {C : Precategory o ℓ} where
109109
110110
Bicat-monad→monad : Monad (Cat _ _) C → Cat.Monad C
111111
Bicat-monad→monad monad = _ , monad' where
112-
private module M = Monad monad
112+
module M = Monad monad
113113
114114
monad' : Cat.Monad-on M.M
115115
monad' .unit = M.η
@@ -127,7 +127,7 @@ module _ {o ℓ} {C : Precategory o ℓ} where
127127
128128
Monad→bicat-monad : Cat.Monad C → Monad (Cat _ _) C
129129
Monad→bicat-monad (M , monad) = monad' where
130-
private module M = Cat.Monad-on (monad)
130+
module M = Cat.Monad-on (monad)
131131
132132
monad' : Monad (Cat _ _) C
133133
monad' .Monad.M = M

src/Cat/Bi/Instances/Relations.lagda.md

Lines changed: 20 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -187,35 +187,34 @@ into a subobject.]
187187
→ (χ : a ↬ b)
188188
→ (∘-rel φ (∘-rel ψ χ)) Sub.≅ (∘-rel (∘-rel φ ψ) χ)
189189
∘-rel-assoc {a} {b} {c} {d} r s t = done where
190-
private
191-
module rs = ∘-rel r s
192-
module st = ∘-rel s t
193-
module [rs]t = ∘-rel (∘-rel r s) t
194-
module r[st] = ∘-rel r (∘-rel s t)
195-
v₂ = rs.inter .p₂
196-
v₁ = rs.inter .p₁
190+
module rs = ∘-rel r s
191+
module st = ∘-rel s t
192+
module [rs]t = ∘-rel (∘-rel r s) t
193+
module r[st] = ∘-rel r (∘-rel s t)
194+
v₂ = rs.inter .p₂
195+
v₁ = rs.inter .p₁
197196
198-
u₂ = st.inter .p₂
199-
u₁ = st.inter .p₁
200-
open Relation r renaming (src to r₁ ; tgt to r₂) hiding (rel)
201-
open Relation s renaming (src to s₁ ; tgt to s₂) hiding (rel)
202-
open Relation t renaming (src to t₁ ; tgt to t₂) hiding (rel)
197+
u₂ = st.inter .p₂
198+
u₁ = st.inter .p₁
199+
open Relation r renaming (src to r₁ ; tgt to r₂) hiding (rel)
200+
open Relation s renaming (src to s₁ ; tgt to s₂) hiding (rel)
201+
open Relation t renaming (src to t₁ ; tgt to t₂) hiding (rel)
203202
204-
i : ∀ {x y} {f : Hom x y} → Hom im[ f ] y
205-
i = factor _ .forget
203+
i : ∀ {x y} {f : Hom x y} → Hom im[ f ] y
204+
i = factor _ .forget
206205
207-
q : ∀ {x y} {f : Hom x y} → Hom x im[ f ]
208-
q = factor _ .mediate
206+
q : ∀ {x y} {f : Hom x y} → Hom x im[ f ]
207+
q = factor _ .mediate
209208
210-
ξ₁ = [rs]t.inter .p₁
211-
ξ₂ = [rs]t.inter .p₂
209+
ξ₁ = [rs]t.inter .p₁
210+
ξ₂ = [rs]t.inter .p₂
212211
213-
ζ₁ = r[st].inter .p₁
214-
ζ₂ = r[st].inter .p₂
212+
ζ₁ = r[st].inter .p₁
213+
ζ₂ = r[st].inter .p₂
215214
216215
X : Pullback C (rs.inter .p₁) (st.inter .p₂)
217216
X = lex.pullbacks (rs.inter .p₁) (st.inter .p₂)
218-
private module X = Pullback X renaming (p₂ to x₁ ; p₁ to x₂)
217+
module X = Pullback X renaming (p₂ to x₁ ; p₁ to x₂)
219218
open X using (x₂ ; x₁)
220219
```
221220
-->

src/Cat/Bi/Instances/Spans.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,10 +149,10 @@ module _ (pb : ∀ {a b c} (f : Hom a b) (g : Hom c b) → Pullback C f g) where
149149
module x = Pullback (pb (x1 .left) (x2 .right))
150150
module y = Pullback (pb (y1 .left) (y2 .right))
151151
152+
open Pullback
152153
x→y : Hom x.apex y.apex
153154
x→y = y.universal {p₁' = f .map ∘ x.p₁} {p₂' = g .map ∘ x.p₂} comm
154155
where abstract
155-
open Pullback
156156
comm : y1 .left ∘ f .map ∘ x.p₁ ≡ y2 .right ∘ g .map ∘ x.p₂
157157
comm = pulll (sym (f .left)) ∙ x.square ∙ pushl (g .right)
158158

src/Cat/Displayed/Cartesian/Discrete.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -449,7 +449,7 @@ this witness lives in a proposition (it is a pair of propositions), so
449449
it survives automatically.
450450

451451
```agda
452-
private unquoteDecl eqv = declare-record-iso eqv (quote is-discrete-cartesian-fibration)
452+
unquoteDecl eqv = declare-record-iso eqv (quote is-discrete-cartesian-fibration)
453453
hl : ∀ x → is-prop _
454454
hl x = Iso→is-hlevel! 1 eqv
455455
```

src/Cat/Displayed/Morphism.lagda.md

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -299,9 +299,14 @@ record _≅[_]_
299299
inverses' : Inverses[ i .inverses ] to' from'
300300
301301
open Inverses[_] inverses' public
302+
```
302303

304+
<!--
305+
```agda
303306
open _≅[_]_ public
307+
{-# INLINE _≅[_]_.constructor #-}
304308
```
309+
-->
305310

306311
Since isomorphisms over the identity map will be of particular
307312
importance, we also define their own type: they are the _vertical
@@ -374,10 +379,8 @@ make-iso[_]
374379
→ f' ∘' g' ≡[ iso .invl ] id'
375380
→ g' ∘' f' ≡[ iso .invr ] id'
376381
→ a' ≅[ iso ] b'
377-
make-iso[ inv ] f' g' p q .to' = f'
378-
make-iso[ inv ] f' g' p q .from' = g'
379-
make-iso[ inv ] f' g' p q .inverses' .Inverses[_].invl' = p
380-
make-iso[ inv ] f' g' p q .inverses' .Inverses[_].invr' = q
382+
{-# INLINE make-iso[_] #-}
383+
make-iso[ inv ] f' g' p q = record { to' = f' ; from' = g' ; inverses' = record { invl' = p ; invr' = q }}
381384
382385
make-invertible[_]
383386
: ∀ {a b a' b'} {f : Hom a b} {f' : Hom[ f ] a' b'}

src/Cat/Displayed/Total.lagda.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -122,17 +122,17 @@ isomorphisms in $B$ and $E$.
122122
123123
total-iso→iso : ∀ {x y} → x ∫E.≅ y → x .fst ≅ y .fst
124124
total-iso→iso f = make-iso
125-
(∫E._≅_.to f .hom)
126-
(∫E._≅_.from f .hom)
127-
(ap hom $ ∫E._≅_.invl f)
128-
(ap hom $ ∫E._≅_.invr f)
125+
(∫E._≅_.to f .hom)
126+
(∫E._≅_.from f .hom)
127+
(ap hom $ ∫E._≅_.invl f)
128+
(ap hom $ ∫E._≅_.invr f)
129129
130130
total-iso→iso[] : ∀ {x y} → (f : x ∫E.≅ y) → x .snd ≅[ total-iso→iso f ] y .snd
131131
total-iso→iso[] f = make-iso[ total-iso→iso f ]
132-
(∫E._≅_.to f .preserves)
133-
(∫E._≅_.from f .preserves)
134-
(ap preserves $ ∫E._≅_.invl f)
135-
(ap preserves $ ∫E._≅_.invr f)
132+
(∫E._≅_.to f .preserves)
133+
(∫E._≅_.from f .preserves)
134+
(ap preserves $ ∫E._≅_.invl f)
135+
(ap preserves $ ∫E._≅_.invr f)
136136
```
137137

138138
## Pullbacks in the total category

0 commit comments

Comments
 (0)