-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
135 lines (117 loc) · 5.13 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from asi.model import AttentionSpatialInterpolationModel as asi
import json
class train:
def __init__(self, sigma, learning_rate, batch_size, num_neuron, num_layers, size_embedded,
num_nearest_geo, num_nearest_eucli, id_dataset, label, graph_label, num_nearest,
epochs, validation_split, early_stopping, optimier, **kwargs):
"""
:param sigma:
:param learning_rate:
:param batch_size:
:param num_neuron:
:param num_layers:
:param size_embedded:
:param num_nearest_geo:
:param num_nearest_eucli:
:param id_dataset:
:param label:
:param graph_label:
:param num_nearest:
:param epochs:
:param validation_split:
:param early_stopping:
:param optimier:
:param kwargs:
"""
self.NUM_NEAREST = num_nearest
self.SIGMA = sigma
self.LEARNING_RATE = learning_rate
self.BATCH_SIZE = batch_size
self.NUM_NEURON = num_neuron
self.NUM_LAYERS = num_layers
self.SIZE_EMBEDDED = size_embedded
self.NUM_NEAREST_GEO = num_nearest_geo
self.NUM_NEAREST_EUCLI = num_nearest_eucli
self.ID_DATASET = id_dataset
self.EPOCHS = epochs
self.OPTIMIZER = optimier
self.VALIDATION_SPLIT = validation_split
self.LABEL = label
self.EARLY_STOPPING = early_stopping
self.GRAPH_LABEL = graph_label
self.num_image_features = kwargs.get('num_image_features')
self.scale = kwargs.get('scale', False)
self.image_scale = kwargs.get('image_scale', True)
self.image_feature_extractor = kwargs.get('image_feature_extractor', 'VGG')
self.weight = kwargs.get('weight', 'asi_kc_weights_240216_109K.hdf5')
def __call__(self):
####################################### Model ##########################################
# build of the object
spatial = asi(id_dataset=self.ID_DATASET,
num_nearest=self.NUM_NEAREST,
early_stopping=self.EARLY_STOPPING,
num_image_features=self.num_image_features, scale=self.scale,
image_feature_extractor=self.image_feature_extractor, image_scale=self.image_scale)
# build of the model
model = spatial.build(sigma=[0, self.SIGMA],
optimizer=self.OPTIMIZER,
learning_rate=self.LEARNING_RATE,
num_layers=self.NUM_LAYERS,
num_neuron=self.NUM_NEURON,
size_embedded=self.SIZE_EMBEDDED,
graph_label=self.GRAPH_LABEL,
num_nearest_geo=self.NUM_NEAREST_GEO,
num_nearest_eucli=self.NUM_NEAREST_EUCLI,
num_image_features=self.num_image_features)
# prediction
result = spatial.predict_value(model=model,
weights=self.weight,
num_nearest_geo=self.NUM_NEAREST_GEO,
num_nearest_eucli=self.NUM_NEAREST_EUCLI)
return result
if __name__ == "__main__":
# %matplotlib inline
# import sys
# sys.path.append("../../")
from matplotlib import rcParams
rcParams['figure.figsize'] = (8, 4)
rcParams['figure.dpi'] = 100
rcParams['font.size'] = 8
rcParams['font.family'] = 'sans-serif'
rcParams['axes.facecolor'] = '#ffffff'
rcParams['lines.linewidth'] = 2.0
hyperparameter={
"num_nearest":60,
"sigma":2,
"learning_rate":0.001,
"batch_size":250,
"num_neuron":60,
"num_layers":3,
"size_embedded":50,
"num_nearest_geo":45,
"num_nearest_eucli":45,
"id_dataset":'kc',
"epochs":450,
"optimier":'adam',
"validation_split":0.1,
"label":'asi_poa',
"early_stopping": False,
"graph_label":'matrix',
"num_image_features": 512,
"scale": True,
"image_feature_extractor": 'vgg', # 'vgg'; num_image_features-512 , 'vit'; num_image_features-768, 'resnet101'; num_image_features-2048
"image_scale": True,
"weight": 'asi_kc_weights_240216_109K.hdf5' # weight need to be in the path accordingly. ex; ASI/output/models/kc/
}
spatial = train(**hyperparameter)
result = spatial()
mae_test, rmse_test, mape_test, mae_train, rmse_train, mape_train = result
res = {
'mae_test': mae_test,
'rmse_test': rmse_test,
'mape_test': mape_test,
'mae_train': mae_train,
'rmse_train': rmse_train,
'mape_train': mape_train
}
print(json.dumps(res, indent=4))