-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsingle_extract_pose.py
35 lines (25 loc) · 1.1 KB
/
single_extract_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from src.controlnet_aux import DWposeDetector
from PIL import Image
import torchvision.transforms as transforms
import torch
def init_dwpose_detector(device):
# specify configs, ckpts and device, or it will be downloaded automatically and use cpu by default
det_config = './src/configs/yolox_l_8xb8-300e_coco.py'
det_ckpt = './ckpts/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
pose_config = './src/configs/dwpose-l_384x288.py'
pose_ckpt = './ckpts/dw-ll_ucoco_384.pth'
dwpose_model = DWposeDetector(
det_config=det_config,
det_ckpt=det_ckpt,
pose_config=pose_config,
pose_ckpt=pose_ckpt,
device=device
)
return dwpose_model.to(device)
def inference_pose(img_path, image_size=(1024, 1024)):
device = torch.device(f"cuda:{0}")
model = init_dwpose_detector(device=device)
pil_image = Image.open(img_path).convert("RGB").resize(image_size, Image.BICUBIC)
dwpose_image = model(pil_image, output_type='np', image_resolution=image_size[1])
save_dwpose_image = Image.fromarray(dwpose_image)
return save_dwpose_image