-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmetrics.py
522 lines (408 loc) · 19.7 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import os
import pathlib
import torch
import numpy as np
import skimage
from imageio import imread
from scipy import linalg
from torch.nn.functional import adaptive_avg_pool2d
from skimage.metrics import structural_similarity as compare_ssim
from skimage.metrics import peak_signal_noise_ratio as compare_psnr
import glob
import argparse
import matplotlib.pyplot as plt
from inception import InceptionV3
#from scripts.PerceptualSimilarity.models import dist_model as dm
import lpips
import pandas as pd
import json
import imageio
import cv2
print(skimage.__version__)
class FID():
"""docstring for FID
Calculates the Frechet Inception Distance (FID) to evalulate GANs
The FID metric calculates the distance between two distributions of images.
Typically, we have summary statistics (mean & covariance matrix) of one
of these distributions, while the 2nd distribution is given by a GAN.
When run as a stand-alone program, it compares the distribution of
images that are stored as PNG/JPEG at a specified location with a
distribution given by summary statistics (in pickle format).
The FID is calculated by assuming that X_1 and X_2 are the activations of
the pool_3 layer of the inception net for generated samples and real world
samples respectivly.
See --help to see further details.
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow
Copyright 2018 Institute of Bioinformatics, JKU Linz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
def __init__(self):
self.dims = 2048
self.batch_size = 128
self.cuda = True
self.verbose=False
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[self.dims]
self.model = InceptionV3([block_idx])
if self.cuda:
# TODO: put model into specific GPU
self.model.cuda()
def __call__(self, images, gt_path):
""" images: list of the generated image. The values must lie between 0 and 1.
gt_path: the path of the ground truth images. The values must lie between 0 and 1.
"""
if not os.path.exists(gt_path):
raise RuntimeError('Invalid path: %s' % gt_path)
print('calculate gt_path statistics...')
m1, s1 = self.compute_statistics_of_path(gt_path, self.verbose)
print('calculate generated_images statistics...')
m2, s2 = self.calculate_activation_statistics(images, self.verbose)
fid_value = self.calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
def calculate_from_disk(self, generated_path, gt_path, img_size):
"""
"""
if not os.path.exists(gt_path):
raise RuntimeError('Invalid path: %s' % gt_path)
if not os.path.exists(generated_path):
raise RuntimeError('Invalid path: %s' % generated_path)
print ('exp-path - '+generated_path)
print('calculate gt_path statistics...')
m1, s1 = self.compute_statistics_of_path(gt_path, self.verbose, img_size)
print('calculate generated_path statistics...')
m2, s2 = self.compute_statistics_of_path(generated_path, self.verbose, img_size)
print('calculate frechet distance...')
fid_value = self.calculate_frechet_distance(m1, s1, m2, s2)
print('fid_distance %f' % (fid_value))
return fid_value
def compute_statistics_of_path(self, path , verbose, img_size):
size_flag = '{}_{}'.format(img_size[0], img_size[1])
npz_file = os.path.join(path, size_flag + '_statistics.npz')
if os.path.exists(npz_file):
f = np.load(npz_file)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
path = pathlib.Path(path)
files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
imgs = (np.array([(cv2.resize(imread(str(fn)).astype(np.float32),img_size,interpolation=cv2.INTER_CUBIC)) for fn in files]))/255.0
# Bring images to shape (B, 3, H, W)
imgs = imgs.transpose((0, 3, 1, 2))
# Rescale images to be between 0 and 1
m, s = self.calculate_activation_statistics(imgs, verbose)
np.savez(npz_file, mu=m, sigma=s)
return m, s
def calculate_activation_statistics(self, images, verbose):
"""Calculation of the statistics used by the FID.
Params:
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the
number of calculated batches is reported.
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = self.get_activations(images, verbose)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def get_activations(self, images, verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.
-- model : Instance of inception model
-- batch_size : the images numpy array is split into batches with
batch size batch_size. A reasonable batch size depends
on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the number
of calculated batches is reported.
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
self.model.eval()
d0 = images.shape[0]
if self.batch_size > d0:
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
self.batch_size = d0
n_batches = d0 // self.batch_size
n_used_imgs = n_batches * self.batch_size
pred_arr = np.empty((n_used_imgs, self.dims))
for i in range(n_batches):
if verbose:
print('\rPropagating batch %d/%d' % (i + 1, n_batches))
# end='', flush=True)
start = i * self.batch_size
end = start + self.batch_size
batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor)
# batch = Variable(batch, volatile=True)
if self.cuda:
batch = batch.cuda()
pred = self.model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.shape[2] != 1 or pred.shape[3] != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred_arr[start:end] = pred.cpu().data.numpy().reshape(self.batch_size, -1)
if verbose:
print(' done')
return pred_arr
def calculate_frechet_distance(self, mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representive data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representive data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
class Reconstruction_Metrics():
def __init__(self, metric_list=['ssim', 'psnr', 'l1', 'mae'], data_range=1, win_size=51, multichannel=True):
self.data_range = data_range
self.win_size = win_size
self.multichannel = multichannel
for metric in metric_list:
if metric in ['ssim', 'psnr', 'l1', 'mae']:
setattr(self, metric, True)
else:
print('unsupport reconstruction metric: %s'%metric)
def __call__(self, inputs, gts):
"""
inputs: the generated image, size (b,c,w,h), data range(0, data_range)
gts: the ground-truth image, size (b,c,w,h), data range(0, data_range)
"""
result = dict()
[b,n,w,h] = inputs.size()
inputs = inputs.view(b*n, w, h).detach().cpu().numpy().astype(np.float32).transpose(1,2,0)
gts = gts.view(b*n, w, h).detach().cpu().numpy().astype(np.float32).transpose(1,2,0)
if hasattr(self, 'ssim'):
ssim_value = compare_ssim(inputs, gts, data_range=self.data_range,
win_size=self.win_size, multichannel=self.multichannel)
result['ssim'] = ssim_value
if hasattr(self, 'psnr'):
psnr_value = compare_psnr(inputs, gts, self.data_range)
result['psnr'] = psnr_value
if hasattr(self, 'l1'):
l1_value = compare_l1(inputs, gts)
result['l1'] = l1_value
if hasattr(self, 'mae'):
mae_value = compare_mae(inputs, gts)
result['mae'] = mae_value
return result
def calculate_from_disk(self, inputs, gts, save_path=None, img_size=(176,256), sort=True, debug=0):
"""
inputs: .txt files, floders, image files (string), image files (list)
gts: .txt files, floders, image files (string), image files (list)
"""
if sort:
input_image_list = sorted(get_image_list(inputs))
gt_image_list = sorted(get_image_list(gts))
else:
input_image_list = get_image_list(inputs)
gt_image_list = get_image_list(gts)
size_flag = '{}_{}'.format(img_size[0], img_size[1])
npz_file = os.path.join(save_path, size_flag + '_metrics.npz')
if os.path.exists(npz_file):
f = np.load(npz_file)
psnr,ssim,ssim_256,mae,l1=f['psnr'],f['ssim'],f['ssim_256'],f['mae'],f['l1']
else:
psnr = []
ssim = []
ssim_256 = []
mae = []
l1 = []
names = []
for index in range(len(input_image_list)):
name = os.path.basename(input_image_list[index])
names.append(name)
img_gt = (cv2.resize(imread(str(gt_image_list[index])).astype(np.float32), img_size,interpolation=cv2.INTER_CUBIC)) /255.0
img_pred = (cv2.resize(imread(str(input_image_list[index])).astype(np.float32), img_size,interpolation=cv2.INTER_CUBIC)) / 255.0
if debug != 0:
plt.subplot('121')
plt.imshow(img_gt)
plt.title('Groud truth')
plt.subplot('122')
plt.imshow(img_pred)
plt.title('Output')
plt.show()
psnr.append(compare_psnr(img_gt, img_pred, data_range=self.data_range))
ssim.append(compare_ssim(img_gt, img_pred, data_range=self.data_range,
win_size=self.win_size,multichannel=self.multichannel, channel_axis=2))
mae.append(compare_mae(img_gt, img_pred))
l1.append(compare_l1(img_gt, img_pred))
img_gt_256 = img_gt*255.0
img_pred_256 = img_pred*255.0
ssim_256.append(compare_ssim(img_gt_256, img_pred_256, gaussian_weights=True, sigma=1.2,
use_sample_covariance=False, multichannel=True, channel_axis=2,
data_range=img_pred_256.max() - img_pred_256.min()))
if np.mod(index, 200) == 0:
print(
str(index) + ' images processed',
"PSNR: %.4f" % round(np.mean(psnr), 4),
"SSIM_256: %.4f" % round(np.mean(ssim_256), 4),
"MAE: %.4f" % round(np.mean(mae), 4),
"l1: %.4f" % round(np.mean(l1), 4),
)
if save_path:
np.savez(save_path + '/' + size_flag + '_metrics.npz', psnr=psnr, ssim=ssim, ssim_256=ssim_256, mae=mae, l1=l1, names=names)
print(
"PSNR: %.4f" % round(np.mean(psnr), 4),
"PSNR Variance: %.4f" % round(np.var(psnr), 4),
"SSIM_256: %.4f" % round(np.mean(ssim_256), 4),
"SSIM_256 Variance: %.4f" % round(np.var(ssim_256), 4),
"MAE: %.4f" % round(np.mean(mae), 4),
"MAE Variance: %.4f" % round(np.var(mae), 4),
"l1: %.4f" % round(np.mean(l1), 4),
"l1 Variance: %.4f" % round(np.var(l1), 4)
)
dic = {"psnr":[round(np.mean(psnr), 6)],
"psnr_variance": [round(np.var(psnr), 6)],
"ssim_256": [round(np.mean(ssim_256), 6)],
"ssim_256_variance": [round(np.var(ssim_256), 6)],
"mae": [round(np.mean(mae), 6)],
"mae_variance": [round(np.var(mae), 6)],
"l1": [round(np.mean(l1), 6)],
"l1_variance": [round(np.var(l1), 6)] }
return dic
def get_image_list(flist):
if isinstance(flist, list):
return flist
# flist: image file path, image directory path, text file flist path
if isinstance(flist, str):
if os.path.isdir(flist):
flist = list(glob.glob(flist + '/*.jpg')) + list(glob.glob(flist + '/*.png'))
flist.sort()
return flist
if os.path.isfile(flist):
try:
return np.genfromtxt(flist, dtype=np.str)
except:
return [flist]
print('can not read files from %s return empty list'%flist)
return []
def compare_l1(img_true, img_test):
img_true = img_true.astype(np.float32)
img_test = img_test.astype(np.float32)
return np.mean(np.abs(img_true - img_test))
def compare_mae(img_true, img_test):
img_true = img_true.astype(np.float32)
img_test = img_test.astype(np.float32)
return np.sum(np.abs(img_true - img_test)) / np.sum(img_true + img_test)
def preprocess_path_for_deform_task(gt_path, distorted_path):
distorted_image_list = sorted(get_image_list(distorted_path))
gt_list=[]
distorated_list=[]
for distorted_image in distorted_image_list:
image = os.path.basename(distorted_image)[1:]
image = image.split('_to_')[-1]
gt_image = gt_path + '/' + image.replace('jpg', 'png')
if not os.path.isfile(gt_image):
print(distorted_image, gt_image)
print('=====')
continue
gt_list.append(gt_image)
distorated_list.append(distorted_image)
return gt_list, distorated_list
class LPIPS():
def __init__(self, use_gpu=True):
self.model = lpips.LPIPS(net='alex').eval().cuda()
self.use_gpu=use_gpu
def __call__(self, image_1, image_2):
"""
image_1: images with size (n, 3, w, h) with value [-1, 1]
image_2: images with size (n, 3, w, h) with value [-1, 1]
"""
result = self.model.forward(image_1, image_2)
return result
def calculate_from_disk(self, path_1, path_2,img_size, batch_size=64, verbose=False, sort=True):
if sort:
files_1 = sorted(get_image_list(path_1))
files_2 = sorted(get_image_list(path_2))
else:
files_1 = get_image_list(path_1)
files_2 = get_image_list(path_2)
results=[]
d0 = len(files_1)
if batch_size > d0:
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = d0
n_batches = d0 // batch_size
for i in range(n_batches):
if verbose:
print('\rPropagating batch %d/%d' % (i + 1, n_batches))
# end='', flush=True)
start = i * batch_size
end = start + batch_size
imgs_1 = np.array([cv2.resize(imread(str(fn)).astype(np.float32),img_size,interpolation=cv2.INTER_CUBIC)/255.0 for fn in files_1[start:end]])
imgs_2 = np.array([cv2.resize(imread(str(fn)).astype(np.float32),img_size,interpolation=cv2.INTER_CUBIC)/255.0 for fn in files_2[start:end]])
imgs_1 = imgs_1.transpose((0, 3, 1, 2))
imgs_2 = imgs_2.transpose((0, 3, 1, 2))
img_1_batch = torch.from_numpy(imgs_1).type(torch.FloatTensor)
img_2_batch = torch.from_numpy(imgs_2).type(torch.FloatTensor)
if self.use_gpu:
img_1_batch = img_1_batch.cuda()
img_2_batch = img_2_batch.cuda()
with torch.no_grad():
result = self.model.forward(img_1_batch, img_2_batch)
results.append(result)
distance = torch.cat(results,0)[:,0,0,0].mean()
print('lpips: %.3f'%distance)
return distance