-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatgptex.html
376 lines (350 loc) · 23.5 KB
/
chatgptex.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.2.475">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="dcterms.date" content="2023-08-01">
<title>ChatGPT examples and responses</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script src="chatgptex_files/libs/clipboard/clipboard.min.js"></script>
<script src="chatgptex_files/libs/quarto-html/quarto.js"></script>
<script src="chatgptex_files/libs/quarto-html/popper.min.js"></script>
<script src="chatgptex_files/libs/quarto-html/tippy.umd.min.js"></script>
<script src="chatgptex_files/libs/quarto-html/anchor.min.js"></script>
<link href="chatgptex_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="chatgptex_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="chatgptex_files/libs/bootstrap/bootstrap.min.js"></script>
<link href="chatgptex_files/libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="chatgptex_files/libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
</head>
<body class="fullcontent">
<div id="quarto-content" class="page-columns page-rows-contents page-layout-article">
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title">ChatGPT examples and responses</h1>
</div>
<div class="quarto-title-meta">
<div>
<div class="quarto-title-meta-heading">Published</div>
<div class="quarto-title-meta-contents">
<p class="date">August 1, 2023</p>
</div>
</div>
</div>
</header>
<section id="question-1" class="level1">
<h1>Question 1</h1>
<p>Write me some R code using the mtcars dataset to plot a comparison of miles per gallon versus car model</p>
<section id="answer" class="level2">
<h2 class="anchored" data-anchor-id="answer">Answer</h2>
<div class="cell">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Load the mtcars dataset (it should already be available in R)</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(mtcars)</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Plotting the comparison of miles per gallon (mpg) versus car model</span></span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(mpg <span class="sc">~</span> <span class="fu">as.factor</span>(<span class="fu">row.names</span>(mtcars)), <span class="at">data =</span> mtcars, </span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a> <span class="at">xlab =</span> <span class="st">"Car Model"</span>, <span class="at">ylab =</span> <span class="st">"Miles per Gallon"</span>, </span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Comparison of Miles per Gallon by Car Model"</span>,</span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"blue"</span>, <span class="at">pch =</span> <span class="dv">16</span>, <span class="at">cex =</span> <span class="fl">1.5</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
</section>
<section id="question-2" class="level1">
<h1>Question 2</h1>
<p>Make me an R shiny app with the following dataset to plot a time series of sd_m versus SampleTime with options to select by epchc_station</p>
<p>$ bay_segment <chr> … $ epchc_station <dbl> … $ SampleTime <dttm> … $ yr <dbl> … $ mo <dbl> … $ Latitude <dbl> … $ Longitude <dbl> … $ Total_Depth_m <dbl> … $ Sample_Depth_m <dbl> … $ tn <dbl> … $ tn_q <chr> … $ sd_m <dbl> … $ sd_raw_m <dbl> … $ sd_q <chr> … $ chla <dbl> … $ chla_q <chr> … $ Sal_Top_ppth <dbl> … $ Sal_Mid_ppth <dbl> … $ Sal_Bottom_ppth <dbl> … $ Temp_Water_Top_degC <dbl> … $ Temp_Water_Mid_degC <dbl> … $ Temp_Water_Bottom_degC <dbl> … $ <code>Turbidity_JTU-NTU</code> <chr> … $ Turbidity_Q <chr> … $ Color_345_F45_PCU <chr> … $ Color_345_F45_Q <chr> …</chr></chr></chr></chr></dbl></dbl></dbl></dbl></dbl></dbl></chr></dbl></chr></dbl></dbl></chr></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dttm></dbl></chr></p>
<section id="answer-1" class="level2">
<h2 class="anchored" data-anchor-id="answer-1">Answer</h2>
<div class="cell">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(shiny)</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Replace 'your_data.csv' with the path to your dataset file</span></span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>dataset <span class="ot"><-</span> <span class="fu">read.csv</span>(<span class="st">"your_data.csv"</span>)</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>ui <span class="ot"><-</span> <span class="fu">fluidPage</span>(</span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">titlePanel</span>(<span class="st">"Time Series Plot of sd_m vs SampleTime"</span>),</span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">sidebarLayout</span>(</span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a> <span class="fu">sidebarPanel</span>(</span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a> <span class="fu">selectInput</span>(<span class="st">"station"</span>, <span class="st">"Select Station:"</span>, <span class="at">choices =</span> <span class="fu">unique</span>(dataset<span class="sc">$</span>epchc_station)),</span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">dateRangeInput</span>(<span class="st">"dateRange"</span>, <span class="st">"Select Date Range:"</span>,</span>
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a> <span class="at">start =</span> <span class="fu">min</span>(dataset<span class="sc">$</span>SampleTime), <span class="at">end =</span> <span class="fu">max</span>(dataset<span class="sc">$</span>SampleTime))</span>
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a> ),</span>
<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a> <span class="fu">mainPanel</span>(</span>
<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">plotOutput</span>(<span class="st">"timeSeriesPlot"</span>)</span>
<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a> )</span>
<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a> )</span>
<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a>server <span class="ot"><-</span> <span class="cf">function</span>(input, output) {</span>
<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a> filteredData <span class="ot"><-</span> <span class="fu">reactive</span>({</span>
<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a> dataset <span class="sc">%>%</span></span>
<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a> <span class="fu">filter</span>(epchc_station <span class="sc">==</span> input<span class="sc">$</span>station,</span>
<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a> SampleTime <span class="sc">>=</span> input<span class="sc">$</span>dateRange[<span class="dv">1</span>] <span class="sc">&</span> SampleTime <span class="sc"><=</span> input<span class="sc">$</span>dateRange[<span class="dv">2</span>])</span>
<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a> })</span>
<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a> output<span class="sc">$</span>timeSeriesPlot <span class="ot"><-</span> <span class="fu">renderPlot</span>({</span>
<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a> <span class="fu">ggplot</span>(<span class="fu">filteredData</span>(), <span class="fu">aes</span>(SampleTime, sd_m)) <span class="sc">+</span></span>
<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_line</span>() <span class="sc">+</span></span>
<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">"Sample Time"</span>, <span class="at">y =</span> <span class="st">"sd_m"</span>) <span class="sc">+</span></span>
<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme_minimal</span>()</span>
<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a> })</span>
<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a><span class="fu">shinyApp</span>(ui, server)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
</section>
<section id="question-3" class="level1">
<h1>Question 3</h1>
<p>Convert this SAS code to R:</p>
<p>/* Step 1: Import the dataset <em>/ /</em> Replace ‘your_dataset.csv’ with the path to your dataset file <em>/ /</em> If the dataset is in the same folder as your SAS program, you can use a simple filename */ data work.your_data; infile ‘your_dataset.csv’ delimiter=‘,’ dsd firstobs=2; input bay_segment : $50. epchc_station SampleTime : datetime. yr mo Latitude Longitude Total_Depth_m Sample_Depth_m tn tn_q : $10. sd_m sd_raw_m sd_q : $10. chla chla_q : $10. Sal_Top_ppth Sal_Mid_ppth Sal_Bottom_ppth Temp_Water_Top_degC Temp_Water_Mid_degC Temp_Water_Bottom_degC Turbidity_JTU_NTU : $10. Turbidity_Q : $10. Color_345_F45_PCU : $10. Color_345_F45_Q : $10. ; format SampleTime datetime20.; run;</p>
<p>/* Step 2: Select specific columns <em>/ /</em> Here, we select the columns ‘SampleTime’ and ‘sd_m’ */ data work.selected_data; set work.your_data (keep=SampleTime sd_m); run;</p>
<p>/* Step 3: Filter rows based on a condition <em>/ /</em> Here, we filter rows where ‘sd_m’ is greater than 0 */ data work.filtered_data; set work.selected_data; where sd_m > 0; run;</p>
<p>/* Step 4: Create a scatter plot of two variables <em>/ /</em> Here, we plot ‘sd_m’ against ‘SampleTime’ <em>/ /</em> Replace ‘png’ with other formats like ‘gif’, ‘jpeg’, or ‘pdf’ for the output file */ ods graphics on; proc sgplot data=work.filtered_data; scatter x=SampleTime y=sd_m; xaxis label=“Sample Time”; yaxis label=“sd_m”; run; ods graphics off;</p>
<section id="answer-2" class="level2">
<h2 class="anchored" data-anchor-id="answer-2">Answer</h2>
<div class="cell">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 1: Import the dataset</span></span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co"># Replace 'your_dataset.csv' with the path to your dataset file</span></span>
<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="co"># Use read.csv() to read the CSV file</span></span>
<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>your_data <span class="ot"><-</span> <span class="fu">read.csv</span>(<span class="st">'your_dataset.csv'</span>, <span class="at">header =</span> <span class="cn">TRUE</span>)</span>
<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 2: Select specific columns</span></span>
<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="co"># Here, we select the columns 'SampleTime' and 'sd_m'</span></span>
<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>selected_data <span class="ot"><-</span> your_data <span class="sc">%>%</span></span>
<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">select</span>(SampleTime, sd_m)</span>
<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 3: Filter rows based on a condition</span></span>
<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="co"># Here, we filter rows where 'sd_m' is greater than 0</span></span>
<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>filtered_data <span class="ot"><-</span> selected_data <span class="sc">%>%</span></span>
<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a> <span class="fu">filter</span>(sd_m <span class="sc">></span> <span class="dv">0</span>)</span>
<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 4: Create a scatter plot of two variables</span></span>
<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="co"># Here, we plot 'sd_m' against 'SampleTime'</span></span>
<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a><span class="co"># Replace 'png' with other formats like 'png', 'jpeg', or 'pdf' for the output file</span></span>
<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a><span class="fu">png</span>(<span class="st">'scatter_plot.png'</span>)</span>
<span id="cb3-23"><a href="#cb3-23" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(filtered_data, <span class="fu">aes</span>(<span class="at">x =</span> SampleTime, <span class="at">y =</span> sd_m)) <span class="sc">+</span></span>
<span id="cb3-24"><a href="#cb3-24" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_point</span>() <span class="sc">+</span></span>
<span id="cb3-25"><a href="#cb3-25" aria-hidden="true" tabindex="-1"></a> <span class="fu">xlab</span>(<span class="st">"Sample Time"</span>) <span class="sc">+</span></span>
<span id="cb3-26"><a href="#cb3-26" aria-hidden="true" tabindex="-1"></a> <span class="fu">ylab</span>(<span class="st">"sd_m"</span>)</span>
<span id="cb3-27"><a href="#cb3-27" aria-hidden="true" tabindex="-1"></a><span class="fu">dev.off</span>()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
</section>
</main>
<!-- /main column -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const clipboard = new window.ClipboardJS('.code-copy-button', {
target: function(trigger) {
return trigger.previousElementSibling;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start'
};
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html>