You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
SWIFT supports training, inference, evaluation and deployment of nearly **200 LLMs and MLLMs** (multimodal large models). Developers can directly apply our framework to their own research and production environments to realize the complete workflow from model training and evaluation to application. In addition to supporting the lightweight training solutions provided by [PEFT](https://github.com/huggingface/peft), we also provide a complete **Adapters library** to support the latest training techniques such as NEFTune, LoRA+, LLaMA-PRO, etc. This adapter library can be used directly in your own custom workflow without our training scripts.
@@ -40,7 +44,14 @@ Additionally, we are expanding capabilities for other modalities. Currently, we
40
44
41
45
SWIFT has rich documentations for users, please check [here](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM).
42
46
47
+
SWIFT web-ui is available both on [Huggingface space](https://huggingface.co/spaces/tastelikefeet/swift) and [ModelScope studio](https://www.modelscope.cn/studios/iic/Scalable-lightWeight-Infrastructure-for-Fine-Tuning/summary), please feel free to try!
48
+
43
49
## 🎉 News
50
+
- 2024.05.24: Supports Phi3-vision model, Use model_type `phi3-vision-128k-instruct` to train.
51
+
- 2024.05.22: Supports DeepSeek-V2-Lite series models, model_type are `deepseek-v2-lite` and `deepseek-v2-lite-chat`
52
+
- 2024.05.22: Supports TeleChat-12B-v2 model with quantized version, model_type are `telechat-12b-v2` and `telechat-12b-v2-gptq-int4`
53
+
- 🔥2024.05.21: Inference and fine-tuning support for MiniCPM-Llama3-V-2_5 are now available. For more details, please refer to [minicpm-v-2.5 Best Practice](docs/source/Multi-Modal/minicpm-v-2.5最佳实践.md).
54
+
- 🔥2024.05.20: Support for inferencing and fine-tuning cogvlm2-llama3-chinese-chat-19B, cogvlm2-llama3-chat-19B. you can refer to [cogvlm2 Best Practice](docs/source_en/Multi-Modal/cogvlm2-best-practice.md).
44
55
- 🔥2024.05.17: Support peft=0.11.0. Meanwhile support 3 new tuners: `BOFT`, `Vera` and `Pissa`. use `--sft_type boft/vera` to use BOFT or Vera, use `--init_lora_weights pissa` with `--sft_type lora` to use Pissa.
45
56
- 2024.05.16: Supports Llava-Next (Stronger) series models. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/llava-best-practice.md).
46
57
- 🔥2024.05.13: Support Yi-1.5 series models,use `--model_type yi-1_5-9b-chat` to begin!
@@ -56,8 +67,10 @@ SWIFT has rich documentations for users, please check [here](https://github.com/
56
67
- 2024.04.22: Support for inference, fine-tuning, and deployment of **chinese-llama-alpaca-2** series models. This includes:chinese-llama-2-1.3b, chinese-llama-2-7b, chinese-llama-2-13b, chinese-alpaca-2-1.3b, chinese-alpaca-2-7b and chinese-alpaca-2-13b along with their corresponding 16k and 64k long text versions.
57
68
- 2024.04.22: Support for inference and fine-tuning of Llama3 GPTQ-Int4, GPTQ-Int8, and AWQ series models. Support for inference and fine-tuning of chatglm3-6b-128k, Openbuddy-Llama3.
58
69
- 2024.04.20: Support for inference, fine-tuning, and deployment of **Atom** series models. This includes: Atom-7B and Atom-7B-Chat. use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/atom_7b_chat/lora/sft.sh) to train.
59
-
- 2024.04.19: Support for single-card, DDP, ZeRO2, and ZeRO3 training and inference with NPU, please refer to [NPU Inference and Fine-tuning Best Practices](docs/source_en/LLM/NPU-best-practice.md).
70
+
- 2024.04.19: Support for single-card, DDP, ZeRO2, and ZeRO3 training and inference with NPU, please refer to [NPU Inference and Fine-tuning Best Practice](docs/source_en/LLM/NPU-best-practice.md).
60
71
- 2024.04.19: Support for inference, fine-tuning, and deployment of **Llama3** series models. This includes: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B, and Llama-3-70B-Instruct. use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora/sft.sh) to train.
- 2024.04.18: Supported compatibility with HuggingFace ecosystem using the environment variable `USE_HF`, switching to use models and datasets from HF. Please refer to the [HuggingFace ecosystem compatibility documentation](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/Compat-HF.md).
63
76
- 2024.04.17: Support the evaluation for OpenAI standard interfaces. Check the [parameter documentation](docs/source_en/LLM/Command-line-parameters.md#eval-parameters) for details.
@@ -78,8 +91,6 @@ SWIFT has rich documentations for users, please check [here](https://github.com/
78
91
- 🔥2024.03.29: Support the fine-tuning and inference of **Grok-1** 300B MoE, please view details [here](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/Grok-1-best-practice.md).
79
92
- 🔥2024.03.25: Supports inference and fine-tuning of TeleChat-7b and TeleChat-12b model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/telechat_12b/lora/sft.sh) to start training!
80
93
- 🔥2024.03.20: Supports inference and fine-tuning for the **llava** series. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/llava-best-practice.md).
81
-
<details><summary>More</summary>
82
-
83
94
- 🔥2024.03.12: Support inference and fine-tuning for **deepseek-vl** series. Best practices can be found [here](docs/source_en/Multi-Modal/deepseek-vl-best-practice.md).
84
95
- 🔥2024.03.11: Support [GaLore](https://arxiv.org/abs/2403.03507) for effectively reducing memory usage to 1/2 of the original in full-parameter training.
85
96
- 🔥2024.03.10: [End-to-end best practices](docs/source_en/LLM/Qwen1.5-best-practice.md) from fine-tuning to deployment for Qwen1.5-7B-Chat and Qwen1.5-72B-Chat.
@@ -110,7 +121,6 @@ SWIFT has rich documentations for users, please check [here](https://github.com/
110
121
- 2024.01.15: Support yuan series: yuan2-2b-instruct, [yuan2-2b-janus-instruct](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yuan2_2b_janus_instruct), yuan2-51b-instruct, yuan2-102b-instruct.
111
122
- 🔥2024.01.12: Support **deepseek-moe** series: deepseek-moe-16b, [deepseek-moe-16b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/deepseek_moe_16b_chat).
112
123
- 🔥2024.01.04: Support **VLLM deployment**, compatible with **OpenAI API** style, see [VLLM Inference Acceleration and Deployment](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/VLLM-inference-acceleration-and-deployment.md#Deployment) for details.
113
-
114
124
- 2024.01.04: Update [Benchmark](https://github.com/modelscope/swift/blob/main/docs/source/LLM/Benchmark.md) for convenient viewing of training speed and memory usage of different models.
115
125
- 🔥2023.12.29: Support web-ui for sft training and inference, use `swift web-ui` after installing ms-swift to start.
116
126
- 🔥2023.12.29: Support DPO RLHF (Reinforcement Learning from Human Feedback) and three datasets for this task: AI-ModelScope/stack-exchange-paired, AI-ModelScope/hh-rlhf and AI-ModelScope/hh_rlhf_cn. See [documentation](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/DPO.md) to start training!
@@ -193,10 +203,14 @@ This section introduces basic usage, see the [Documentation](#-documentation) se
193
203
194
204
### Web-UI
195
205
206
+
Web-UI is a gradio-based interface for **zero-threshold** training and deployment. It is easy to use and perfectly supports multi-GPU training and deployment:
207
+
196
208
```shell
197
-
swift web-ui
209
+
SWIFT_UI_LANG=en swift web-ui
198
210
```
199
211
212
+

213
+
200
214
### Training
201
215
202
216
#### Training Scripts
@@ -425,7 +439,7 @@ CUDA_VISIBLE_DEVICES=0 swift infer \
425
439
CUDA_VISIBLE_DEVICES=0 swift eval --model_type qwen1half-7b-chat --eval_dataset mmlu ceval
426
440
```
427
441
428
-
### Export
442
+
### Quantization
429
443
430
444
Original model:
431
445
```shell
@@ -442,6 +456,7 @@ CUDA_VISIBLE_DEVICES=0 swift export \
442
456
```
443
457
444
458
### Deployment
459
+
The client uses the OpenAI API for invocation, for details refer to the [LLM deployment documentation](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/VLLM-inference-acceleration-and-deployment.md).
445
460
446
461
Original model:
447
462
```shell
@@ -477,7 +492,7 @@ The complete list of supported models and datasets can be found at [Supported Mo
477
492
| Mistral<br>Mixtral |[Mistral series models](https://github.com/mistralai/mistral-src)| English | 7B-22B | base model<br>instruct model<br>MoE model |
478
493
| Yi<br>Yi1.5 |[01AI's YI series models](https://github.com/01-ai)| Chinese<br>English | 6B-34B<br>including quantized | base model<br>chat model<br>long text model |
479
494
| InternLM<br>InternLM2<br>InternLM2-Math |[Pujiang AI Lab InternLM series models](https://github.com/InternLM/InternLM)| Chinese<br>English | 1.8B-20B | base model<br>chat model<br>math model |
480
-
| DeepSeek<br>DeepSeek-MoE<br>DeepSeek-Coder<br>DeepSeek-Math |[DeepSeek series models](https://github.com/deepseek-ai)| Chinese<br>English | 1.3B-236B | base model<br>chat model<br>MoE model<br>code model<br>math model |
495
+
| DeepSeek<br>DeepSeek-MoE<br>DeepSeek-Coder<br>DeepSeek-Math<br>DeepSeek-V2|[DeepSeek series models](https://github.com/deepseek-ai)| Chinese<br>English | 1.3B-236B | base model<br>chat model<br>MoE model<br>code model<br>math model |
481
496
| MAMBA |[MAMBA temporal convolution model](https://github.com/state-spaces/mamba)| English | 130M-2.8B | base model |
482
497
| Gemma |[Google Gemma series models](https://github.com/google/gemma_pytorch)| English | 2B-7B | base model<br>instruct model |
483
498
| MiniCPM |[OpenBmB MiniCPM series models](https://github.com/OpenBMB/MiniCPM)| Chinese<br>English | 2B-3B | chat model<br>MoE model |
@@ -508,18 +523,19 @@ The complete list of supported models and datasets can be found at [Supported Mo
508
523
509
524
| Model Type | Model Introduction | Language | Model Size | Model Type |
0 commit comments