|
| 1 | +""" |
| 2 | +File name: main.py |
| 3 | +THis file will import data, call the optimization model, provide optimization result |
| 4 | +Input data, then, run the optimization model |
| 5 | +
|
| 6 | +Outline: |
| 7 | +1. Estimating input parameters |
| 8 | +2. |
| 9 | +3. Mdeling |
| 10 | +4. Sensitivity analysis |
| 11 | +5. |
| 12 | +
|
| 13 | +Developer: Tanmoy Das |
| 14 | +Date: Dec 2022 |
| 15 | +""" |
| 16 | +# %% |
| 17 | +globals().clear() # Clear previous workspace |
| 18 | +# import library |
| 19 | +import pandas as pd |
| 20 | +import geopandas as gpd |
| 21 | +import custom_functions, data_visualization |
| 22 | +import model_PAMIP, model_analysis |
| 23 | +import shapely |
| 24 | +import numpy as np |
| 25 | +from sklearn.cluster import MiniBatchKMeans |
| 26 | + |
| 27 | + |
| 28 | +# import data |
| 29 | +spill_data = pd.read_excel('Inputs/data_PAMIP.xlsx', sheet_name='spills', header=0).copy() |
| 30 | +station_data = pd.read_excel('Inputs/data_PAMIP.xlsx', sheet_name='stations', header=0).copy() |
| 31 | +sensitivity_dataR = gpd.read_file('Inputs/ArcGIS_data/Sensitivity_data5.shp').copy() |
| 32 | +# %% Input parameters of the model |
| 33 | +# ++ think what is same across all model and scenes , move them at the top+++ |
| 34 | +# pre-determined inputs |
| 35 | +NumberStMax = 5 |
| 36 | +DistanceMax = 10 # 5 |
| 37 | + |
| 38 | + |
| 39 | +coordinates_spill = custom_functions.extract_coordinate(spill_data) |
| 40 | +coordinates_st = custom_functions.extract_coordinate(station_data) |
| 41 | +num_customers = len(coordinates_spill) |
| 42 | +num_facilities = len(coordinates_st) |
| 43 | + |
| 44 | +# ++ convert 10 into km using google map (for reporting, not related to modeling in this code) |
| 45 | +coor1 = (63.31720065616187, -90.65327442130385) |
| 46 | +coor2 = (61.99735832040513, -92.36804572739923) |
| 47 | +custom_functions.compute_distance(coor1, coor2) |
| 48 | + |
| 49 | + |
| 50 | +#%% |
| 51 | +pairings = {(c, f): custom_functions.compute_distance(coordinates_spill[c], coordinates_st[f]) |
| 52 | + for c in range(num_customers) |
| 53 | + for f in range(num_facilities) |
| 54 | + if custom_functions.compute_distance(tuple(coordinates_spill[c]), tuple(coordinates_st[f])) < DistanceMax} |
| 55 | + |
| 56 | + |
| 57 | +print("Number of viable pairings: {0}".format(len(pairings.keys()))) |
| 58 | + |
| 59 | +# Weights and scaling |
| 60 | +# W = [1, 2000, 1] |
| 61 | +max_spill_size = max(spill_data['Spill size']) |
| 62 | +max_sensitivity = max(sensitivity_dataR['Sensitivit']) |
| 63 | +max_timeR = pairings[max(pairings, key=pairings.get )] |
| 64 | +min_spill_size = min(spill_data['Spill size']) |
| 65 | +min_sensitivity = min(sensitivity_dataR['Sensitivit']) |
| 66 | +min_timeR = pairings[min(pairings, key=pairings.get )] |
| 67 | + |
| 68 | +# x* = (x-x_min)/(x_max - x_min) |
| 69 | + |
| 70 | +#Demand = list(spill_data['Resource needed']).copy() |
| 71 | + |
| 72 | +SizeSpill_R = list(spill_data['Spill size']).copy() |
| 73 | +Sensitivity_R = custom_functions.calculate_sensitivity(coordinates_spill, sensitivity_dataR) |
| 74 | +TimeR_R = pairings.copy() # compute_TimeR +++ |
| 75 | + |
| 76 | +#%% Normalize terms in objective function |
| 77 | +SizeSpill = []; Sensitivity = []; TimeR = [] |
| 78 | +SizeSpill = [((SizeSpill_R[i]-min_spill_size)/(max_spill_size-min_spill_size)) for i in range(len(SizeSpill_R))] |
| 79 | +Sensitivity = [((Sensitivity_R[i]-min_sensitivity)/(max_sensitivity-min_sensitivity)) for i in range(len(Sensitivity_R))] |
| 80 | + |
| 81 | +# TimeR = {((list(TimeR_R.values())[i]-min_timeR)/(max_timeR-min_timeR)) for i in range(len(TimeR_R))} |
| 82 | +TimeR_Scaled = [((list(TimeR_R.values())[i]-min_timeR)/(max_timeR-min_timeR)) for i in range(len(TimeR_R))] |
| 83 | +keysD = TimeR_R.keys() |
| 84 | +TimeR = {} |
| 85 | +for i in range(len(keysD)): |
| 86 | + TimeR[list(keysD)[i]] = TimeR_Scaled[i] |
| 87 | +# %% Predictive Analytics |
| 88 | +# Tradeoff curve for number of stations |
| 89 | +# ---------------------------------------------------------------------------------------------------------------------- |
| 90 | +NumberStMax_list = [1,2,3,4 ,5,6,7,8,9,10] |
| 91 | +W1 = [[0.1, 0.2, 0.7], [0.8, 0.1, 0.1]] # from model configuration table |
| 92 | +Tradeoff_output = [] |
| 93 | +for i in range(len(NumberStMax_list)): |
| 94 | + Wi = W1[1] |
| 95 | + NumberStMax = NumberStMax_list[i] |
| 96 | + m = 'm1' # m2 |
| 97 | + model, cover, select, amount, mvars, names, values, \ |
| 98 | + cover_1s, select_1s, amountSt_groupby, coverage_percentage, \ |
| 99 | + ResponseTimeT, assignment3, spill_df, station_df, \ |
| 100 | + sol_y, assignment, assignment2, assignment_name= model_PAMIP.solve(Wi, coordinates_st, coordinates_spill, |
| 101 | + pairings, SizeSpill, Sensitivity, TimeR, NumberStMax, m, spill_data) |
| 102 | + |
| 103 | + Tradeoff_output.append([NumberStMax, coverage_percentage, int(ResponseTimeT*80)/11]) |
| 104 | + |
| 105 | +Tradeoff_Output_df = pd.DataFrame(Tradeoff_output) |
| 106 | +Tradeoff_Output_df.columns = ['NumberStMax', 'Coverage %', 'Response time (in hours)'] |
| 107 | +Tradeoff_Output_df.to_csv('Outputs/Tradeoff_Output_df.csv') |
| 108 | + |
| 109 | +#%% Draw the tradeoff line graph |
| 110 | +NumberStMax_data = pd.read_csv('Outputs/Tradeoff_Output_df.csv').copy() |
| 111 | +selected = 5 |
| 112 | +data_visualization.draw_tradeoff_plot(NumberStMax_data, selected) |
| 113 | + |
| 114 | + |
| 115 | + |
| 116 | + |
| 117 | +#%% Model configurations and solutions table |
| 118 | +# ---------------------------------------------------------------------------------------------------------------------- |
| 119 | +# Comparing models with different weight vectors |
| 120 | +import random |
| 121 | +values = [.1, .2, .3, .4, .5, .6, .7, .8] |
| 122 | +Wd = [] |
| 123 | +for i in range(1000): |
| 124 | + w1 = random.choice(values); w2 = random.choice(values); w3 = random.choice(values) |
| 125 | + if w1+w2+w3 == 1.0: |
| 126 | + Wd.append([w1, w2, w3]) |
| 127 | +# drop duplication values from list W |
| 128 | +W_Set = set(tuple(element) for element in Wd) |
| 129 | +W0 = [list(t) for t in set(tuple(element) for element in W_Set)] |
| 130 | + |
| 131 | +W = [W0[i] for i in range(10)] |
| 132 | + |
| 133 | +#%% |
| 134 | +m = 'm2' |
| 135 | +model_output = [] |
| 136 | +# Draw Network Diagram |
| 137 | +for i in range(5): |
| 138 | + Wi = W[i] |
| 139 | + model, cover, select, amount, mvars, names, values, \ |
| 140 | + cover_1s, select_1s, amountSt_groupby, coverage_percentage, \ |
| 141 | + ResponseTimeT, assignment3, spill_df, station_df, \ |
| 142 | + sol_y, assignment, assignment2, assignment_name = model_PAMIP.solve(Wi, coordinates_st, coordinates_spill, |
| 143 | + pairings, SizeSpill, Sensitivity, TimeR, |
| 144 | + NumberStMax, m, spill_data) |
| 145 | + |
| 146 | + print(f'coverage_percentage: {coverage_percentage}, i: {i}') |
| 147 | + model_output.append([Wi, model.ObjVal, coverage_percentage, int(ResponseTimeT*80)/11]) |
| 148 | + print('-------------------------------------------------------------') |
| 149 | +Model_Output = pd.DataFrame(model_output) |
| 150 | +Model_Output.columns = ['Weights', 'Objective Value', 'Coverage %', 'Response time (in hours)'] |
| 151 | +Model_Output.to_csv('Outputs/Model_Output.csv') |
| 152 | + |
| 153 | +# %% Draw Network Diagram |
| 154 | +# ---------------------------------------------------------------------------------------------------------------------- |
| 155 | +# Examine model results |
| 156 | +# Sensitivity analysis |
| 157 | + |
| 158 | +W1 = [[0.1, 0.2, 0.7], [0.8, 0.1, 0.1]] # from model configuration table |
| 159 | +for i in range(2): |
| 160 | + Wi = W1[i] |
| 161 | + m = 'm2' # m2 |
| 162 | + model, cover, select, amount, mvars, names, values, \ |
| 163 | + cover_1s, select_1s, amountSt_groupby, coverage_percentage, \ |
| 164 | + ResponseTimeT, assignment3, spill_df, station_df, \ |
| 165 | + sol_y, assignment, assignment2, assignment_name= model_PAMIP.solve(Wi, coordinates_st, coordinates_spill, |
| 166 | + pairings, SizeSpill, Sensitivity, TimeR, NumberStMax, m, spill_data) |
| 167 | + |
| 168 | + model_analysis.draw_network_diagram(DistanceMax, NumberStMax, spill_df, station_df, ResponseTimeT, coverage_percentage, |
| 169 | + assignment3, cover_1s, select_1s, amountSt_groupby, m, Wi) |
| 170 | + |
| 171 | +#%% |
| 172 | +# Feb 20 |
| 173 | +import folium |
| 174 | +gdb1 = gpd.read_file('C:/Users/tanmo/Downloads/lpr_000b21f_e/lpr_000b21f_e.gdb') |
| 175 | +gdb1.plot() |
| 176 | +# Draw empty map +++ |
| 177 | +# map_shipping_spill = folium.Map(location=spill_coordinates.iloc[0], zoom_start=4, min_zoom=2.5, max_zoom=7) |
| 178 | +# Draw the Shipping route |
| 179 | +# map_shipping_spill.choropleth(geo_data="Inputs/ArcGIS_data/Shipping_and_Hydrography.geojson") |
| 180 | + |
| 181 | +# save this map as transparent .svg of jpg file , then import it as .svg file to matplotlib |
| 182 | +#+++ |
| 183 | +#%% Data Scene 2 |
| 184 | +#%% Clustering |
| 185 | +# ---------------------------------------------------------------------------------------------------------------------- |
| 186 | +# %% |
| 187 | +globals().clear() # Clear previous workspace |
| 188 | +# import library |
| 189 | +import pandas as pd |
| 190 | +import geopandas as gpd |
| 191 | +import custom_functions, data_visualization |
| 192 | +import model_PAMIP, model_analysis |
| 193 | +import shapely |
| 194 | +import numpy as np |
| 195 | +from sklearn.cluster import MiniBatchKMeans |
| 196 | + |
| 197 | + |
| 198 | +# import data |
| 199 | +spill_data = pd.read_excel('Inputs/data_PAMIP.xlsx', sheet_name='spills', header=0).copy() |
| 200 | +station_data = pd.read_excel('Inputs/data_PAMIP.xlsx', sheet_name='stations', header=0).copy() |
| 201 | +sensitivity_dataR = gpd.read_file('Inputs/ArcGIS_data/Sensitivity_data5.shp').copy() |
| 202 | +# %% Input parameters of the model |
| 203 | +# ++ think what is same accross all model and scenes , move them at the top+++ |
| 204 | +# pre-determined inputs |
| 205 | +NumberStMax = 5 |
| 206 | +DistanceMax = 10 # 5 |
| 207 | + |
| 208 | +coordinates_spill = custom_functions.extract_coordinate(spill_data) |
| 209 | +coordinates_st = custom_functions.extract_coordinate(station_data) |
| 210 | +num_customers = len(coordinates_spill) |
| 211 | +num_facilities = len(coordinates_st) |
| 212 | + |
| 213 | +import numpy as np |
| 214 | +# Import excel file (containing 10k records) |
| 215 | +spill_data_10000 = pd.read_excel('Inputs/Spill_info_4000.xlsx', header=0).copy() |
| 216 | +# randomly select 2k records |
| 217 | +spill_data_scene2 = spill_data_10000.sample(n=2000) |
| 218 | +spill_size = spill_data_scene2[['Spill size']] |
| 219 | + |
| 220 | +coordinates_spill = custom_functions.extract_coordinate(spill_data_scene2) |
| 221 | +# Cluster them into 50 cluster |
| 222 | +num_clusters = 50 |
| 223 | +kmeans = MiniBatchKMeans(n_clusters=num_clusters, init_size=3*num_clusters, |
| 224 | + ).fit(coordinates_spill) |
| 225 | +memberships = list(kmeans.labels_) |
| 226 | +centroids = list(kmeans.cluster_centers_) # Center point for each cluster |
| 227 | +weights = list(np.histogram(memberships, bins=num_clusters)[0]) # Number of customers in each cluster |
| 228 | +print('First cluster center:', centroids[0]) |
| 229 | +print('Weights for first 10 clusters:', weights[:10]) |
| 230 | + |
| 231 | +# Draw |
| 232 | +icon_size_list = [] |
| 233 | +# Draw the oil spills |
| 234 | +for point_spill in range(0, len(coordinates_spill)): |
| 235 | + icon_size = int((spill_size.iloc[point_spill, 0]/spill_size.max())*20) |
| 236 | + icon_size_list.append(icon_size) |
| 237 | + |
| 238 | +data_visualization.draw_cluster(icon_size_list, coordinates_spill, memberships, centroids) |
| 239 | + |
| 240 | +#%% Apply optimization model |
| 241 | +# Input parameters |
| 242 | +coordinates_spill = kmeans.cluster_centers_.tolist() |
| 243 | +pairings = custom_functions.compute_pairing(coordinates_spill, coordinates_st, DistanceMax) |
| 244 | +Size_DS1 = list(spill_data_scene2['Spill size']).copy() |
| 245 | + |
| 246 | + |
| 247 | +#%% |
| 248 | +cluster_index = {} |
| 249 | +for j in range(len(centroids)): |
| 250 | + cluster_index[j] = [i for i, x in enumerate(memberships) if x == j] |
| 251 | +SizeSpill_Rc = [sum([e for i, e in enumerate(Size_DS1) if i in cluster_index[ii]]) for ii in range(len(cluster_index))] |
| 252 | +Sensitivity_Rc = custom_functions.calculate_sensitivity(coordinates_spill, sensitivity_dataR) |
| 253 | +TimeRc = pairings.copy() |
| 254 | + |
| 255 | +max_spill_size = max(SizeSpill_Rc) |
| 256 | +min_spill_size = min(SizeSpill_Rc) |
| 257 | + |
| 258 | +max_sensitivity = max(Sensitivity_Rc) |
| 259 | +min_sensitivity = min(Sensitivity_Rc) |
| 260 | + |
| 261 | +max_timeR = pairings[max(pairings, key=pairings.get )] |
| 262 | +min_timeR = pairings[min(pairings, key=pairings.get )] |
| 263 | + |
| 264 | +SizeSpill = []; Sensitivity = []; TimeR = []; |
| 265 | +SizeSpill = [((SizeSpill_Rc[i]-min_spill_size)/(max_spill_size-min_spill_size)) for i in range(len(SizeSpill_Rc))] |
| 266 | +Sensitivity = [((Sensitivity_Rc[i]-min_sensitivity)/(max_sensitivity-min_sensitivity)) for i in range(len(Sensitivity_Rc))] |
| 267 | + |
| 268 | +# TimeR = {((list(TimeR_R.values())[i]-min_timeR)/(max_timeR-min_timeR)) for i in range(len(TimeR_R))} |
| 269 | +TimeR_Scaled = [((list(TimeRc.values())[i]-min_timeR)/(max_timeR-min_timeR)) for i in range(len(TimeRc))] |
| 270 | +keysD = TimeRc.keys() |
| 271 | +TimeR = {} |
| 272 | +for i in range(len(keysD)): |
| 273 | + TimeR[list(keysD)[i]] = TimeR_Scaled[i] |
| 274 | + |
| 275 | + |
| 276 | + |
| 277 | +m = 'm2' |
| 278 | +spill_data = spill_data_scene2 |
| 279 | + |
| 280 | + |
| 281 | +#%% |
| 282 | +# Solve the model |
| 283 | +W1 = W #[[0.1, 0.2, 0.7], [0.2, 0.7, 0.1]] # from model configuration table |
| 284 | +for i in range(10): |
| 285 | + Wi = W1[i] |
| 286 | + m = 'm2' # m2 |
| 287 | + model, cover, select, amount, mvars, names, values, \ |
| 288 | + cover_1s, select_1s, amountSt_groupby, coverage_percentage, \ |
| 289 | + ResponseTimeT, assignment3, spill_df, station_df, \ |
| 290 | + sol_y, assignment, assignment2, assignment_name= model_PAMIP.solve(Wi, coordinates_st, coordinates_spill, |
| 291 | + pairings, SizeSpill, Sensitivity, TimeR, NumberStMax, m, spill_data_scene2) |
| 292 | + |
| 293 | + model_analysis.draw_network_diagram(DistanceMax, NumberStMax, spill_df, station_df, ResponseTimeT, coverage_percentage, |
| 294 | + assignment3, cover_1s, select_1s, amountSt_groupby, m, Wi) |
0 commit comments