Skip to content

Latest commit

 

History

History
 
 

dagnn

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

DAGNN

This DGL example implements the GNN model proposed in the paper Towards Deeper Graph Neural Networks.

Paper link: https://arxiv.org/abs/2007.09296

Author's code: https://github.com/divelab/DeeperGNN

Contributor: Liu Tang (@lt610)

Dependecies

  • Python 3.6.10
  • PyTorch 1.4.0
  • numpy 1.18.1
  • dgl 0.5.3
  • tqdm 4.44.1

Dataset

The DGL's built-in Cora, Pubmed and Citeseer datasets. Dataset summary:

Dataset #Nodes #Edges #Feats #Classes #Train Nodes #Val Nodes #Test Nodes
Citeseer 3,327 9,228 3,703 6 120 500 1000
Cora 2,708 10,556 1,433 7 140 500 1000
Pubmed 19,717 88,651 500 3 60 500 1000

Arguments

Dataset options
--dataset          str     The graph dataset name.             Default is 'Cora'.
GPU options
--gpu              int     GPU index.                          Default is -1, using CPU.
Model options
--runs             int     Number of training runs.               Default is 1
--epochs           int     Number of training epochs.             Default is 1500.
--early-stopping   int     Early stopping patience rounds.        Default is 100.
--lr               float   Adam optimizer learning rate.          Default is 0.01.
--lamb             float   L2 regularization coefficient.         Default is 5e-3.
--k                int     Number of propagation layers.          Default is 10.
--hid-dim          int     Hidden layer dimensionalities.         Default is 64.
--dropout          float   Dropout rate                           Default is 0.8

Examples

Train a model which follows the original hyperparameters on different datasets.

# Cora:
python main.py --dataset Cora --gpu 0 --runs 100 --lamb 0.005 --k 12
# Citeseer:
python main.py --dataset Citeseer --gpu 0 --runs 100 --lamb 0.02 --k 16
# Pubmed:
python main.py --dataset Pubmed --gpu 0 --runs 100 --lamb 0.005 --k 20

Performance

On Cora, Citeseer and Pubmed

Dataset Cora Citeseer Pubmed
Accuracy Reported(100 runs) 84.4 ± 0.5 73.3 ± 0.6 80.5 ± 0.5
Accuracy DGL(100 runs) 84.3 ± 0.5 73.1 ± 0.9 80.5 ± 0.4