-
Notifications
You must be signed in to change notification settings - Fork 334
/
6-xgboost.R
36 lines (27 loc) · 914 Bytes
/
6-xgboost.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
library(readr)
library(ROCR)
library(xgboost)
library(parallel)
library(Matrix)
set.seed(123)
d_train <- read_csv("train-0.1m.csv")
d_test <- read_csv("test.csv")
system.time({
X_train_test <- sparse.model.matrix(dep_delayed_15min ~ .-1, data = rbind(d_train, d_test))
X_train <- X_train_test[1:nrow(d_train),]
X_test <- X_train_test[(nrow(d_train)+1):(nrow(d_train)+nrow(d_test)),]
})
dim(X_train)
# random forest with xgboost
system.time({
n_proc <- detectCores()
md <- xgboost(data = X_train, label = ifelse(d_train$dep_delayed_15min=='Y',1,0),
nthread = n_proc, nround = 1, max_depth = 20,
num_parallel_tree = 500, subsample = 0.632,
colsample_bytree = 1/sqrt(length(X_train@x)/nrow(X_train)))
})
system.time({
phat <- predict(md, newdata = X_test)
})
rocr_pred <- prediction(phat, d_test$dep_delayed_15min)
performance(rocr_pred, "auc")