-
Notifications
You must be signed in to change notification settings - Fork 0
/
jmemmgr.c
1119 lines (975 loc) · 40.1 KB
/
jmemmgr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* jmemmgr.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2011-2012 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the JPEG system-independent memory management
* routines. This code is usable across a wide variety of machines; most
* of the system dependencies have been isolated in a separate file.
* The major functions provided here are:
* * pool-based allocation and freeing of memory;
* * policy decisions about how to divide available memory among the
* virtual arrays;
* * control logic for swapping virtual arrays between main memory and
* backing storage.
* The separate system-dependent file provides the actual backing-storage
* access code, and it contains the policy decision about how much total
* main memory to use.
* This file is system-dependent in the sense that some of its functions
* are unnecessary in some systems. For example, if there is enough virtual
* memory so that backing storage will never be used, much of the virtual
* array control logic could be removed. (Of course, if you have that much
* memory then you shouldn't care about a little bit of unused code...)
*/
#define JPEG_INTERNALS
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h" /* import the system-dependent declarations */
#ifndef NO_GETENV
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
extern char * getenv JPP((const char * name));
#endif
#endif
/*
* Some important notes:
* The allocation routines provided here must never return NULL.
* They should exit to error_exit if unsuccessful.
*
* It's not a good idea to try to merge the sarray and barray routines,
* even though they are textually almost the same, because samples are
* usually stored as bytes while coefficients are shorts or ints. Thus,
* in machines where byte pointers have a different representation from
* word pointers, the resulting machine code could not be the same.
*/
/*
* Many machines require storage alignment: longs must start on 4-byte
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
* always returns pointers that are multiples of the worst-case alignment
* requirement, and we had better do so too.
* There isn't any really portable way to determine the worst-case alignment
* requirement. This module assumes that the alignment requirement is
* multiples of sizeof(ALIGN_TYPE).
* By default, we define ALIGN_TYPE as double. This is necessary on some
* workstations (where doubles really do need 8-byte alignment) and will work
* fine on nearly everything. If your machine has lesser alignment needs,
* you can save a few bytes by making ALIGN_TYPE smaller.
* The only place I know of where this will NOT work is certain Macintosh
* 680x0 compilers that define double as a 10-byte IEEE extended float.
* Doing 10-byte alignment is counterproductive because longwords won't be
* aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
* such a compiler.
*/
#ifndef ALIGN_TYPE /* so can override from jconfig.h */
#define ALIGN_TYPE double
#endif
/*
* We allocate objects from "pools", where each pool is gotten with a single
* request to jpeg_get_small() or jpeg_get_large(). There is no per-object
* overhead within a pool, except for alignment padding. Each pool has a
* header with a link to the next pool of the same class.
* Small and large pool headers are identical except that the latter's
* link pointer must be FAR on 80x86 machines.
* Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
* field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
* of the alignment requirement of ALIGN_TYPE.
*/
typedef union small_pool_struct * small_pool_ptr;
typedef union small_pool_struct {
struct {
small_pool_ptr next; /* next in list of pools */
size_t bytes_used; /* how many bytes already used within pool */
size_t bytes_left; /* bytes still available in this pool */
} hdr;
ALIGN_TYPE dummy; /* included in union to ensure alignment */
} small_pool_hdr;
typedef union large_pool_struct FAR * large_pool_ptr;
typedef union large_pool_struct {
struct {
large_pool_ptr next; /* next in list of pools */
size_t bytes_used; /* how many bytes already used within pool */
size_t bytes_left; /* bytes still available in this pool */
} hdr;
ALIGN_TYPE dummy; /* included in union to ensure alignment */
} large_pool_hdr;
/*
* Here is the full definition of a memory manager object.
*/
typedef struct {
struct jpeg_memory_mgr pub; /* public fields */
/* Each pool identifier (lifetime class) names a linked list of pools. */
small_pool_ptr small_list[JPOOL_NUMPOOLS];
large_pool_ptr large_list[JPOOL_NUMPOOLS];
/* Since we only have one lifetime class of virtual arrays, only one
* linked list is necessary (for each datatype). Note that the virtual
* array control blocks being linked together are actually stored somewhere
* in the small-pool list.
*/
jvirt_sarray_ptr virt_sarray_list;
jvirt_barray_ptr virt_barray_list;
/* This counts total space obtained from jpeg_get_small/large */
long total_space_allocated;
/* alloc_sarray and alloc_barray set this value for use by virtual
* array routines.
*/
JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
} my_memory_mgr;
typedef my_memory_mgr * my_mem_ptr;
/*
* The control blocks for virtual arrays.
* Note that these blocks are allocated in the "small" pool area.
* System-dependent info for the associated backing store (if any) is hidden
* inside the backing_store_info struct.
*/
struct jvirt_sarray_control {
JSAMPARRAY mem_buffer; /* => the in-memory buffer */
JDIMENSION rows_in_array; /* total virtual array height */
JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
JDIMENSION rows_in_mem; /* height of memory buffer */
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
JDIMENSION cur_start_row; /* first logical row # in the buffer */
JDIMENSION first_undef_row; /* row # of first uninitialized row */
boolean pre_zero; /* pre-zero mode requested? */
boolean dirty; /* do current buffer contents need written? */
boolean b_s_open; /* is backing-store data valid? */
jvirt_sarray_ptr next; /* link to next virtual sarray control block */
backing_store_info b_s_info; /* System-dependent control info */
};
struct jvirt_barray_control {
JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
JDIMENSION rows_in_array; /* total virtual array height */
JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
JDIMENSION rows_in_mem; /* height of memory buffer */
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
JDIMENSION cur_start_row; /* first logical row # in the buffer */
JDIMENSION first_undef_row; /* row # of first uninitialized row */
boolean pre_zero; /* pre-zero mode requested? */
boolean dirty; /* do current buffer contents need written? */
boolean b_s_open; /* is backing-store data valid? */
jvirt_barray_ptr next; /* link to next virtual barray control block */
backing_store_info b_s_info; /* System-dependent control info */
};
#ifdef MEM_STATS /* optional extra stuff for statistics */
LOCAL(void)
print_mem_stats (j_common_ptr cinfo, int pool_id)
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
small_pool_ptr shdr_ptr;
large_pool_ptr lhdr_ptr;
/* Since this is only a debugging stub, we can cheat a little by using
* fprintf directly rather than going through the trace message code.
* This is helpful because message parm array can't handle longs.
*/
fprintf(stderr, "Freeing pool %d, total space = %ld\n",
pool_id, mem->total_space_allocated);
for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
lhdr_ptr = lhdr_ptr->hdr.next) {
fprintf(stderr, " Large chunk used %ld\n",
(long) lhdr_ptr->hdr.bytes_used);
}
for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
shdr_ptr = shdr_ptr->hdr.next) {
fprintf(stderr, " Small chunk used %ld free %ld\n",
(long) shdr_ptr->hdr.bytes_used,
(long) shdr_ptr->hdr.bytes_left);
}
}
#endif /* MEM_STATS */
LOCAL(noreturn_t)
out_of_memory (j_common_ptr cinfo, int which)
/* Report an out-of-memory error and stop execution */
/* If we compiled MEM_STATS support, report alloc requests before dying */
{
#ifdef MEM_STATS
cinfo->err->trace_level = 2; /* force self_destruct to report stats */
#endif
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
}
/*
* Allocation of "small" objects.
*
* For these, we use pooled storage. When a new pool must be created,
* we try to get enough space for the current request plus a "slop" factor,
* where the slop will be the amount of leftover space in the new pool.
* The speed vs. space tradeoff is largely determined by the slop values.
* A different slop value is provided for each pool class (lifetime),
* and we also distinguish the first pool of a class from later ones.
* NOTE: the values given work fairly well on both 16- and 32-bit-int
* machines, but may be too small if longs are 64 bits or more.
*/
static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
{
1600, /* first PERMANENT pool */
16000 /* first IMAGE pool */
};
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
{
0, /* additional PERMANENT pools */
5000 /* additional IMAGE pools */
};
#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
METHODDEF(void *)
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
/* Allocate a "small" object */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
small_pool_ptr hdr_ptr, prev_hdr_ptr;
char * data_ptr;
size_t odd_bytes, min_request, slop;
/* Check for unsatisfiable request (do now to ensure no overflow below) */
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
if (odd_bytes > 0)
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
/* See if space is available in any existing pool */
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
prev_hdr_ptr = NULL;
hdr_ptr = mem->small_list[pool_id];
while (hdr_ptr != NULL) {
if (hdr_ptr->hdr.bytes_left >= sizeofobject)
break; /* found pool with enough space */
prev_hdr_ptr = hdr_ptr;
hdr_ptr = hdr_ptr->hdr.next;
}
/* Time to make a new pool? */
if (hdr_ptr == NULL) {
/* min_request is what we need now, slop is what will be leftover */
min_request = sizeofobject + SIZEOF(small_pool_hdr);
if (prev_hdr_ptr == NULL) /* first pool in class? */
slop = first_pool_slop[pool_id];
else
slop = extra_pool_slop[pool_id];
/* Don't ask for more than MAX_ALLOC_CHUNK */
if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
/* Try to get space, if fail reduce slop and try again */
for (;;) {
hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
if (hdr_ptr != NULL)
break;
slop /= 2;
if (slop < MIN_SLOP) /* give up when it gets real small */
out_of_memory(cinfo, 2); /* jpeg_get_small failed */
}
mem->total_space_allocated += min_request + slop;
/* Success, initialize the new pool header and add to end of list */
hdr_ptr->hdr.next = NULL;
hdr_ptr->hdr.bytes_used = 0;
hdr_ptr->hdr.bytes_left = sizeofobject + slop;
if (prev_hdr_ptr == NULL) /* first pool in class? */
mem->small_list[pool_id] = hdr_ptr;
else
prev_hdr_ptr->hdr.next = hdr_ptr;
}
/* OK, allocate the object from the current pool */
data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
hdr_ptr->hdr.bytes_used += sizeofobject;
hdr_ptr->hdr.bytes_left -= sizeofobject;
return (void *) data_ptr;
}
/*
* Allocation of "large" objects.
*
* The external semantics of these are the same as "small" objects,
* except that FAR pointers are used on 80x86. However the pool
* management heuristics are quite different. We assume that each
* request is large enough that it may as well be passed directly to
* jpeg_get_large; the pool management just links everything together
* so that we can free it all on demand.
* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
* structures. The routines that create these structures (see below)
* deliberately bunch rows together to ensure a large request size.
*/
METHODDEF(void FAR *)
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
/* Allocate a "large" object */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
large_pool_ptr hdr_ptr;
size_t odd_bytes;
/* Check for unsatisfiable request (do now to ensure no overflow below) */
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
if (odd_bytes > 0)
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
/* Always make a new pool */
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
SIZEOF(large_pool_hdr));
if (hdr_ptr == NULL)
out_of_memory(cinfo, 4); /* jpeg_get_large failed */
mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
/* Success, initialize the new pool header and add to list */
hdr_ptr->hdr.next = mem->large_list[pool_id];
/* We maintain space counts in each pool header for statistical purposes,
* even though they are not needed for allocation.
*/
hdr_ptr->hdr.bytes_used = sizeofobject;
hdr_ptr->hdr.bytes_left = 0;
mem->large_list[pool_id] = hdr_ptr;
return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
}
/*
* Creation of 2-D sample arrays.
* The pointers are in near heap, the samples themselves in FAR heap.
*
* To minimize allocation overhead and to allow I/O of large contiguous
* blocks, we allocate the sample rows in groups of as many rows as possible
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
* NB: the virtual array control routines, later in this file, know about
* this chunking of rows. The rowsperchunk value is left in the mem manager
* object so that it can be saved away if this sarray is the workspace for
* a virtual array.
*/
METHODDEF(JSAMPARRAY)
alloc_sarray (j_common_ptr cinfo, int pool_id,
JDIMENSION samplesperrow, JDIMENSION numrows)
/* Allocate a 2-D sample array */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
JSAMPARRAY result;
JSAMPROW workspace;
JDIMENSION rowsperchunk, currow, i;
long ltemp;
/* Calculate max # of rows allowed in one allocation chunk */
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
((long) samplesperrow * SIZEOF(JSAMPLE));
if (ltemp <= 0)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
if (ltemp < (long) numrows)
rowsperchunk = (JDIMENSION) ltemp;
else
rowsperchunk = numrows;
mem->last_rowsperchunk = rowsperchunk;
/* Get space for row pointers (small object) */
result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
(size_t) (numrows * SIZEOF(JSAMPROW)));
/* Get the rows themselves (large objects) */
currow = 0;
while (currow < numrows) {
rowsperchunk = MIN(rowsperchunk, numrows - currow);
workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
* SIZEOF(JSAMPLE)));
for (i = rowsperchunk; i > 0; i--) {
result[currow++] = workspace;
workspace += samplesperrow;
}
}
return result;
}
/*
* Creation of 2-D coefficient-block arrays.
* This is essentially the same as the code for sample arrays, above.
*/
METHODDEF(JBLOCKARRAY)
alloc_barray (j_common_ptr cinfo, int pool_id,
JDIMENSION blocksperrow, JDIMENSION numrows)
/* Allocate a 2-D coefficient-block array */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
JBLOCKARRAY result;
JBLOCKROW workspace;
JDIMENSION rowsperchunk, currow, i;
long ltemp;
/* Calculate max # of rows allowed in one allocation chunk */
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
((long) blocksperrow * SIZEOF(JBLOCK));
if (ltemp <= 0)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
if (ltemp < (long) numrows)
rowsperchunk = (JDIMENSION) ltemp;
else
rowsperchunk = numrows;
mem->last_rowsperchunk = rowsperchunk;
/* Get space for row pointers (small object) */
result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
(size_t) (numrows * SIZEOF(JBLOCKROW)));
/* Get the rows themselves (large objects) */
currow = 0;
while (currow < numrows) {
rowsperchunk = MIN(rowsperchunk, numrows - currow);
workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
* SIZEOF(JBLOCK)));
for (i = rowsperchunk; i > 0; i--) {
result[currow++] = workspace;
workspace += blocksperrow;
}
}
return result;
}
/*
* About virtual array management:
*
* The above "normal" array routines are only used to allocate strip buffers
* (as wide as the image, but just a few rows high). Full-image-sized buffers
* are handled as "virtual" arrays. The array is still accessed a strip at a
* time, but the memory manager must save the whole array for repeated
* accesses. The intended implementation is that there is a strip buffer in
* memory (as high as is possible given the desired memory limit), plus a
* backing file that holds the rest of the array.
*
* The request_virt_array routines are told the total size of the image and
* the maximum number of rows that will be accessed at once. The in-memory
* buffer must be at least as large as the maxaccess value.
*
* The request routines create control blocks but not the in-memory buffers.
* That is postponed until realize_virt_arrays is called. At that time the
* total amount of space needed is known (approximately, anyway), so free
* memory can be divided up fairly.
*
* The access_virt_array routines are responsible for making a specific strip
* area accessible (after reading or writing the backing file, if necessary).
* Note that the access routines are told whether the caller intends to modify
* the accessed strip; during a read-only pass this saves having to rewrite
* data to disk. The access routines are also responsible for pre-zeroing
* any newly accessed rows, if pre-zeroing was requested.
*
* In current usage, the access requests are usually for nonoverlapping
* strips; that is, successive access start_row numbers differ by exactly
* num_rows = maxaccess. This means we can get good performance with simple
* buffer dump/reload logic, by making the in-memory buffer be a multiple
* of the access height; then there will never be accesses across bufferload
* boundaries. The code will still work with overlapping access requests,
* but it doesn't handle bufferload overlaps very efficiently.
*/
METHODDEF(jvirt_sarray_ptr)
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
JDIMENSION samplesperrow, JDIMENSION numrows,
JDIMENSION maxaccess)
/* Request a virtual 2-D sample array */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
jvirt_sarray_ptr result;
/* Only IMAGE-lifetime virtual arrays are currently supported */
if (pool_id != JPOOL_IMAGE)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
/* get control block */
result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
SIZEOF(struct jvirt_sarray_control));
result->mem_buffer = NULL; /* marks array not yet realized */
result->rows_in_array = numrows;
result->samplesperrow = samplesperrow;
result->maxaccess = maxaccess;
result->pre_zero = pre_zero;
result->b_s_open = FALSE; /* no associated backing-store object */
result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
mem->virt_sarray_list = result;
return result;
}
METHODDEF(jvirt_barray_ptr)
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
JDIMENSION blocksperrow, JDIMENSION numrows,
JDIMENSION maxaccess)
/* Request a virtual 2-D coefficient-block array */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
jvirt_barray_ptr result;
/* Only IMAGE-lifetime virtual arrays are currently supported */
if (pool_id != JPOOL_IMAGE)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
/* get control block */
result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
SIZEOF(struct jvirt_barray_control));
result->mem_buffer = NULL; /* marks array not yet realized */
result->rows_in_array = numrows;
result->blocksperrow = blocksperrow;
result->maxaccess = maxaccess;
result->pre_zero = pre_zero;
result->b_s_open = FALSE; /* no associated backing-store object */
result->next = mem->virt_barray_list; /* add to list of virtual arrays */
mem->virt_barray_list = result;
return result;
}
METHODDEF(void)
realize_virt_arrays (j_common_ptr cinfo)
/* Allocate the in-memory buffers for any unrealized virtual arrays */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
long space_per_minheight, maximum_space, avail_mem;
long minheights, max_minheights;
jvirt_sarray_ptr sptr;
jvirt_barray_ptr bptr;
/* Compute the minimum space needed (maxaccess rows in each buffer)
* and the maximum space needed (full image height in each buffer).
* These may be of use to the system-dependent jpeg_mem_available routine.
*/
space_per_minheight = 0;
maximum_space = 0;
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
if (sptr->mem_buffer == NULL) { /* if not realized yet */
space_per_minheight += (long) sptr->maxaccess *
(long) sptr->samplesperrow * SIZEOF(JSAMPLE);
maximum_space += (long) sptr->rows_in_array *
(long) sptr->samplesperrow * SIZEOF(JSAMPLE);
}
}
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
if (bptr->mem_buffer == NULL) { /* if not realized yet */
space_per_minheight += (long) bptr->maxaccess *
(long) bptr->blocksperrow * SIZEOF(JBLOCK);
maximum_space += (long) bptr->rows_in_array *
(long) bptr->blocksperrow * SIZEOF(JBLOCK);
}
}
if (space_per_minheight <= 0)
return; /* no unrealized arrays, no work */
/* Determine amount of memory to actually use; this is system-dependent. */
avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
mem->total_space_allocated);
/* If the maximum space needed is available, make all the buffers full
* height; otherwise parcel it out with the same number of minheights
* in each buffer.
*/
if (avail_mem >= maximum_space)
max_minheights = 1000000000L;
else {
max_minheights = avail_mem / space_per_minheight;
/* If there doesn't seem to be enough space, try to get the minimum
* anyway. This allows a "stub" implementation of jpeg_mem_available().
*/
if (max_minheights <= 0)
max_minheights = 1;
}
/* Allocate the in-memory buffers and initialize backing store as needed. */
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
if (sptr->mem_buffer == NULL) { /* if not realized yet */
minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
if (minheights <= max_minheights) {
/* This buffer fits in memory */
sptr->rows_in_mem = sptr->rows_in_array;
} else {
/* It doesn't fit in memory, create backing store. */
sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
jpeg_open_backing_store(cinfo, & sptr->b_s_info,
(long) sptr->rows_in_array *
(long) sptr->samplesperrow *
(long) SIZEOF(JSAMPLE));
sptr->b_s_open = TRUE;
}
sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
sptr->samplesperrow, sptr->rows_in_mem);
sptr->rowsperchunk = mem->last_rowsperchunk;
sptr->cur_start_row = 0;
sptr->first_undef_row = 0;
sptr->dirty = FALSE;
}
}
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
if (bptr->mem_buffer == NULL) { /* if not realized yet */
minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
if (minheights <= max_minheights) {
/* This buffer fits in memory */
bptr->rows_in_mem = bptr->rows_in_array;
} else {
/* It doesn't fit in memory, create backing store. */
bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
jpeg_open_backing_store(cinfo, & bptr->b_s_info,
(long) bptr->rows_in_array *
(long) bptr->blocksperrow *
(long) SIZEOF(JBLOCK));
bptr->b_s_open = TRUE;
}
bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
bptr->blocksperrow, bptr->rows_in_mem);
bptr->rowsperchunk = mem->last_rowsperchunk;
bptr->cur_start_row = 0;
bptr->first_undef_row = 0;
bptr->dirty = FALSE;
}
}
}
LOCAL(void)
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
/* Do backing store read or write of a virtual sample array */
{
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
file_offset = ptr->cur_start_row * bytesperrow;
/* Loop to read or write each allocation chunk in mem_buffer */
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
/* One chunk, but check for short chunk at end of buffer */
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
/* Transfer no more than is currently defined */
thisrow = (long) ptr->cur_start_row + i;
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
/* Transfer no more than fits in file */
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
if (rows <= 0) /* this chunk might be past end of file! */
break;
byte_count = rows * bytesperrow;
if (writing)
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
else
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
file_offset += byte_count;
}
}
LOCAL(void)
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
/* Do backing store read or write of a virtual coefficient-block array */
{
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
file_offset = ptr->cur_start_row * bytesperrow;
/* Loop to read or write each allocation chunk in mem_buffer */
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
/* One chunk, but check for short chunk at end of buffer */
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
/* Transfer no more than is currently defined */
thisrow = (long) ptr->cur_start_row + i;
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
/* Transfer no more than fits in file */
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
if (rows <= 0) /* this chunk might be past end of file! */
break;
byte_count = rows * bytesperrow;
if (writing)
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
else
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
file_offset += byte_count;
}
}
METHODDEF(JSAMPARRAY)
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
JDIMENSION start_row, JDIMENSION num_rows,
boolean writable)
/* Access the part of a virtual sample array starting at start_row */
/* and extending for num_rows rows. writable is true if */
/* caller intends to modify the accessed area. */
{
JDIMENSION end_row = start_row + num_rows;
JDIMENSION undef_row;
/* debugging check */
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
ptr->mem_buffer == NULL)
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
/* Make the desired part of the virtual array accessible */
if (start_row < ptr->cur_start_row ||
end_row > ptr->cur_start_row+ptr->rows_in_mem) {
if (! ptr->b_s_open)
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
/* Flush old buffer contents if necessary */
if (ptr->dirty) {
do_sarray_io(cinfo, ptr, TRUE);
ptr->dirty = FALSE;
}
/* Decide what part of virtual array to access.
* Algorithm: if target address > current window, assume forward scan,
* load starting at target address. If target address < current window,
* assume backward scan, load so that target area is top of window.
* Note that when switching from forward write to forward read, will have
* start_row = 0, so the limiting case applies and we load from 0 anyway.
*/
if (start_row > ptr->cur_start_row) {
ptr->cur_start_row = start_row;
} else {
/* use long arithmetic here to avoid overflow & unsigned problems */
long ltemp;
ltemp = (long) end_row - (long) ptr->rows_in_mem;
if (ltemp < 0)
ltemp = 0; /* don't fall off front end of file */
ptr->cur_start_row = (JDIMENSION) ltemp;
}
/* Read in the selected part of the array.
* During the initial write pass, we will do no actual read
* because the selected part is all undefined.
*/
do_sarray_io(cinfo, ptr, FALSE);
}
/* Ensure the accessed part of the array is defined; prezero if needed.
* To improve locality of access, we only prezero the part of the array
* that the caller is about to access, not the entire in-memory array.
*/
if (ptr->first_undef_row < end_row) {
if (ptr->first_undef_row < start_row) {
if (writable) /* writer skipped over a section of array */
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
undef_row = start_row; /* but reader is allowed to read ahead */
} else {
undef_row = ptr->first_undef_row;
}
if (writable)
ptr->first_undef_row = end_row;
if (ptr->pre_zero) {
size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
end_row -= ptr->cur_start_row;
while (undef_row < end_row) {
FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
undef_row++;
}
} else {
if (! writable) /* reader looking at undefined data */
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
}
}
/* Flag the buffer dirty if caller will write in it */
if (writable)
ptr->dirty = TRUE;
/* Return address of proper part of the buffer */
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
}
METHODDEF(JBLOCKARRAY)
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
JDIMENSION start_row, JDIMENSION num_rows,
boolean writable)
/* Access the part of a virtual block array starting at start_row */
/* and extending for num_rows rows. writable is true if */
/* caller intends to modify the accessed area. */
{
JDIMENSION end_row = start_row + num_rows;
JDIMENSION undef_row;
/* debugging check */
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
ptr->mem_buffer == NULL)
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
/* Make the desired part of the virtual array accessible */
if (start_row < ptr->cur_start_row ||
end_row > ptr->cur_start_row+ptr->rows_in_mem) {
if (! ptr->b_s_open)
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
/* Flush old buffer contents if necessary */
if (ptr->dirty) {
do_barray_io(cinfo, ptr, TRUE);
ptr->dirty = FALSE;
}
/* Decide what part of virtual array to access.
* Algorithm: if target address > current window, assume forward scan,
* load starting at target address. If target address < current window,
* assume backward scan, load so that target area is top of window.
* Note that when switching from forward write to forward read, will have
* start_row = 0, so the limiting case applies and we load from 0 anyway.
*/
if (start_row > ptr->cur_start_row) {
ptr->cur_start_row = start_row;
} else {
/* use long arithmetic here to avoid overflow & unsigned problems */
long ltemp;
ltemp = (long) end_row - (long) ptr->rows_in_mem;
if (ltemp < 0)
ltemp = 0; /* don't fall off front end of file */
ptr->cur_start_row = (JDIMENSION) ltemp;
}
/* Read in the selected part of the array.
* During the initial write pass, we will do no actual read
* because the selected part is all undefined.
*/
do_barray_io(cinfo, ptr, FALSE);
}
/* Ensure the accessed part of the array is defined; prezero if needed.
* To improve locality of access, we only prezero the part of the array
* that the caller is about to access, not the entire in-memory array.
*/
if (ptr->first_undef_row < end_row) {
if (ptr->first_undef_row < start_row) {
if (writable) /* writer skipped over a section of array */
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
undef_row = start_row; /* but reader is allowed to read ahead */
} else {
undef_row = ptr->first_undef_row;
}
if (writable)
ptr->first_undef_row = end_row;
if (ptr->pre_zero) {
size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
end_row -= ptr->cur_start_row;
while (undef_row < end_row) {
FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
undef_row++;
}
} else {
if (! writable) /* reader looking at undefined data */
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
}
}
/* Flag the buffer dirty if caller will write in it */
if (writable)
ptr->dirty = TRUE;
/* Return address of proper part of the buffer */
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
}
/*
* Release all objects belonging to a specified pool.
*/
METHODDEF(void)
free_pool (j_common_ptr cinfo, int pool_id)
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
small_pool_ptr shdr_ptr;
large_pool_ptr lhdr_ptr;
size_t space_freed;
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
#ifdef MEM_STATS
if (cinfo->err->trace_level > 1)
print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
#endif
/* If freeing IMAGE pool, close any virtual arrays first */
if (pool_id == JPOOL_IMAGE) {
jvirt_sarray_ptr sptr;
jvirt_barray_ptr bptr;
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
if (sptr->b_s_open) { /* there may be no backing store */
sptr->b_s_open = FALSE; /* prevent recursive close if error */
(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
}
}
mem->virt_sarray_list = NULL;
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
if (bptr->b_s_open) { /* there may be no backing store */
bptr->b_s_open = FALSE; /* prevent recursive close if error */
(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
}
}
mem->virt_barray_list = NULL;
}
/* Release large objects */
lhdr_ptr = mem->large_list[pool_id];
mem->large_list[pool_id] = NULL;
while (lhdr_ptr != NULL) {
large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
space_freed = lhdr_ptr->hdr.bytes_used +
lhdr_ptr->hdr.bytes_left +
SIZEOF(large_pool_hdr);
jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
mem->total_space_allocated -= space_freed;
lhdr_ptr = next_lhdr_ptr;
}
/* Release small objects */
shdr_ptr = mem->small_list[pool_id];
mem->small_list[pool_id] = NULL;
while (shdr_ptr != NULL) {
small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
space_freed = shdr_ptr->hdr.bytes_used +
shdr_ptr->hdr.bytes_left +
SIZEOF(small_pool_hdr);
jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
mem->total_space_allocated -= space_freed;
shdr_ptr = next_shdr_ptr;
}
}
/*
* Close up shop entirely.
* Note that this cannot be called unless cinfo->mem is non-NULL.
*/