-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfourier.c
390 lines (291 loc) · 9.38 KB
/
fourier.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*============================================================================
fourier.c (originally fourier(f)(d).c and fftmisc.c)
- Don Cross <[email protected]>
The file FFT.ZIP contains C source code for performing Discrete Fast Fourier
Transforms (DFFTs) and inverse DFFTs.
Please see fouier.txt which was the readme.txt that Don Cross provided.
This source code is public domain. Use at your own risk.
For more information, point your web browser at: (dead link)
http://www.intersrv.com/~dcross/fft.html
Helper routines for Fast Fourier Transform implementation.
Contains common code for fft_float() and fft_double().
See also:
..\include\fourier.h
Revision history:
1998 September 19 [Don Cross]
Improved the efficiency of IsPowerOfTwo().
Updated coding standards.
2003 [John Labenski]
Merged fourierd.c (double), fourierf.c (float), and fftmisc.c into
fourier.c for simplicity.
============================================================================*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "fourier.h"
#define BITS_PER_WORD (sizeof(unsigned) * 8)
#define DDC_PI (3.14159265358979323846)
/*--- start of file fftmisc.c---*/
// #define IsPowerOfTwo(x) (((x)<2) || ((x)&((x)-1)) ? false : true)
// returns 1 if the numver is a power of two else 0
int IsPowerOfTwo ( unsigned x )
{
if ( x < 2 )
return 0;
if ( x & (x-1) ) // Thanks to 'byang' for this cute trick!
return 0;
return 1;
}
// returns the number of bits needed
unsigned NumberOfBitsNeeded ( unsigned PowerOfTwo )
{
unsigned i;
for ( i=0; ; i++ )
{
if ( PowerOfTwo & (1 << i) )
return i;
}
return 0;
}
unsigned ReverseBits ( unsigned index, unsigned NumBits )
{
unsigned i, rev;
for ( i=rev=0; i < NumBits; i++ )
{
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
double Index_to_frequency ( unsigned NumSamples, unsigned Index )
{
if ( Index >= NumSamples )
return 0.0;
else if ( Index <= NumSamples/2 )
return (double)Index / (double)NumSamples;
return -(double)(NumSamples-Index) / (double)NumSamples;
}
/*--- end of file fftmisc.c---*/
/*============================================================================
fourierd.c - Don Cross <[email protected]>
http://www.intersrv.com/~dcross/fft.html
Contains definitions for doing Fourier transforms
and inverse Fourier transforms.
This module performs operations on arrays of 'double'.
Revision history:
1998 September 19 [Don Cross]
Updated coding standards.
Improved efficiency of trig calculations.
============================================================================*/
#define CHECKPOINTERDOUBLE(p) if (CheckPointerDouble(p,#p) == 0) return 0;
static int CheckPointerDouble ( void *p, const char *name )
{
if ( p == NULL )
{
fprintf ( stderr, "Error in fft_double(): %s == NULL\n", name );
return 0;
}
return 1;
}
int fft_double (
unsigned NumSamples,
int InverseTransform,
double *RealIn,
double *ImagIn,
double *RealOut,
double *ImagOut )
{
unsigned NumBits; /* Number of bits needed to store indices */
unsigned i, j, k, n;
unsigned BlockSize, BlockEnd;
double angle_numerator = -2.0 * DDC_PI; // this is - to match matlab
double tr, ti; /* temp real, temp imaginary */
if ( !IsPowerOfTwo(NumSamples) || (NumSamples < 2) )
{
fprintf (
stderr,
"Error in fft(): NumSamples=%u is not power of two\n",
NumSamples );
return 0;
}
if ( InverseTransform )
angle_numerator = -angle_numerator;
CHECKPOINTERDOUBLE ( RealIn );
CHECKPOINTERDOUBLE ( RealOut );
CHECKPOINTERDOUBLE ( ImagOut );
NumBits = NumberOfBitsNeeded ( NumSamples );
/*
** Do simultaneous data copy and bit-reversal ordering into outputs...
*/
for ( i=0; i < NumSamples; i++ )
{
j = ReverseBits ( i, NumBits );
RealOut[j] = RealIn[i];
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
}
/*
** Do the FFT itself...
*/
BlockEnd = 1;
for ( BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1 )
{
double delta_angle = angle_numerator / (double)BlockSize;
double sm2 = sin ( -2 * delta_angle );
double sm1 = sin ( -delta_angle );
double cm2 = cos ( -2 * delta_angle );
double cm1 = cos ( -delta_angle );
double w = 2 * cm1;
/* double ar[3], ai[3]; replaced array with fixed vals below - labenski */
double ar0, ar1, ar2, ai0, ai1, ai2;
for ( i=0; i < NumSamples; i += BlockSize )
{
ar2 = cm2;
ar1 = cm1;
ai2 = sm2;
ai1 = sm1;
for ( j=i, n=0; n < BlockEnd; j++, n++ )
{
ar0 = w*ar1 - ar2;
ar2 = ar1;
ar1 = ar0;
ai0 = w*ai1 - ai2;
ai2 = ai1;
ai1 = ai0;
k = j + BlockEnd;
tr = ar0*RealOut[k] - ai0*ImagOut[k];
ti = ar0*ImagOut[k] + ai0*RealOut[k];
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if ( InverseTransform )
{
double denom = (double)NumSamples;
for ( i=0; i < NumSamples; i++ )
{
RealOut[i] /= denom;
ImagOut[i] /= denom;
}
}
return 1;
}
/*--- end of file fourierd.c ---*/
/*============================================================================
fourierf.c - Don Cross <[email protected]>
http://www.intersrv.com/~dcross/fft.html
Contains definitions for doing Fourier transforms
and inverse Fourier transforms.
This module performs operations on arrays of 'float'.
Revision history:
1998 September 19 [Don Cross]
Updated coding standards.
Improved efficiency of trig calculations.
============================================================================*/
#define CHECKPOINTERFLOAT(p) if (CheckPointerFloat(p,#p) == 0) return 0;
static int CheckPointerFloat ( void *p, const char *name )
{
if ( p == NULL )
{
fprintf ( stderr, "Error in fft_float(): %s == NULL\n", name );
return 0;
}
return 1;
}
int fft_float (
unsigned NumSamples,
int InverseTransform,
float *RealIn,
float *ImagIn,
float *RealOut,
float *ImagOut )
{
unsigned NumBits; /* Number of bits needed to store indices */
unsigned i, j, k, n;
unsigned BlockSize, BlockEnd;
double angle_numerator = -2.0 * DDC_PI; // this is - to match matlab
double tr, ti; /* temp real, temp imaginary */
if ( !IsPowerOfTwo(NumSamples) || (NumSamples < 2) )
{
fprintf (
stderr,
"Error in fft(): NumSamples=%u is not power of two\n",
NumSamples );
return 0;
}
if ( InverseTransform )
angle_numerator = -angle_numerator;
CHECKPOINTERFLOAT ( RealIn );
CHECKPOINTERFLOAT ( RealOut );
CHECKPOINTERFLOAT ( ImagOut );
NumBits = NumberOfBitsNeeded ( NumSamples );
/*
** Do simultaneous data copy and bit-reversal ordering into outputs...
*/
for ( i=0; i < NumSamples; i++ )
{
j = ReverseBits ( i, NumBits );
RealOut[j] = RealIn[i];
ImagOut[j] = (ImagIn == NULL) ? (float)0.0 : ImagIn[i];
}
/*
** Do the FFT itself...
*/
BlockEnd = 1;
for ( BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1 )
{
double delta_angle = angle_numerator / (double)BlockSize;
double sm2 = sin ( -2 * delta_angle );
double sm1 = sin ( -delta_angle );
double cm2 = cos ( -2 * delta_angle );
double cm1 = cos ( -delta_angle );
double w = 2 * cm1;
/* double ar[3], ai[3]; replaced array with fixed vals below - labenski */
double ar0, ar1, ar2, ai0, ai1, ai2;
/* double temp; */
for ( i=0; i < NumSamples; i += BlockSize )
{
ar2 = cm2;
ar1 = cm1;
ai2 = sm2;
ai1 = sm1;
for ( j=i, n=0; n < BlockEnd; j++, n++ )
{
ar0 = w*ar1 - ar2;
ar2 = ar1;
ar1 = ar0;
ai0 = w*ai1 - ai2;
ai2 = ai1;
ai1 = ai0;
k = j + BlockEnd;
tr = ar0*RealOut[k] - ai0*ImagOut[k];
ti = ar0*ImagOut[k] + ai0*RealOut[k];
RealOut[k] = (float)(RealOut[j] - tr);
ImagOut[k] = (float)(ImagOut[j] - ti);
RealOut[j] += (float)tr;
ImagOut[j] += (float)ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if ( InverseTransform )
{
float denom = (float)NumSamples;
for ( i=0; i < NumSamples; i++ )
{
RealOut[i] /= denom;
ImagOut[i] /= denom;
}
}
return 1;
}
/*--- end of file fourierf.c ---*/