-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrainer_ours.py
396 lines (327 loc) · 17.2 KB
/
trainer_ours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
Modified by @subhc
"""
import os.path as osp
import random
import einops
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import wandb
from sklearn.linear_model import LinearRegression
from sklearn.metrics import normalized_mutual_info_score, adjusted_rand_score
from sklearn.preprocessing import StandardScaler
from torch.utils.data import DataLoader
from tqdm import tqdm
import loss
from datasets.lit_dataset import LitDataset
from models.feature_extraction import FeatureExtraction
from models.model_factory import model_generator
from tps.rand_tps import RandTPS
from utils.utils import adjusted_rand_score_overflow
from visualize import Visualizer
IMG_MEAN = np.array((104.00698793, 116.66876762,
122.67891434), dtype=np.float32)
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter)**(power))
def adjust_learning_rate(optimizer, i_iter, args):
lr = lr_poly(args.learning_rate, i_iter, 100000, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
class Trainer(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
np.random.seed(args.random_seed)
random.seed(args.random_seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
print("Nondet")
# create network
model, optimizer_state_dict = model_generator(args, add_bg_mask=False)
model.train()
model.cuda(args.gpu)
self.model = model
# Initialize spatial/color transform for Equuivariance loss.
self.tps = RandTPS(args.input_size, args.input_size,
batch_size=args.batch_size,
sigma=args.tps_sigma,
border_padding=args.eqv_border_padding,
random_mirror=args.eqv_random_mirror,
random_scale=(args.random_scale_low,
args.random_scale_high),
mode=args.tps_mode).cuda(args.gpu)
# KL divergence loss for equivariance
self.kl = nn.KLDivLoss(reduction='none').cuda(args.gpu)
# loss/ bilinear upsampling
self.interp = nn.Upsample(
size=(args.input_size, args.input_size), mode='bilinear', align_corners=True)
# Initialize feature extractor and part basis for the semantic consistency loss.
if int(args.ref_layer1[-3]+args.ref_layer1[-1]) <= int(args.ref_layer2[-3]+args.ref_layer2[-1]):
last_layer = args.ref_layer1+','+args.ref_layer2
weights = [args.ref_weight1, args.ref_weight2]
else:
last_layer = args.ref_layer2+','+args.ref_layer1
weights = [args.ref_weight2, args.ref_weight1]
self.zoo_feat_net = FeatureExtraction(
feature_extraction_cnn=args.ref_net, normalization=args.ref_norm, last_layer=last_layer, weights=weights, gpu=args.gpu)
self.zoo_feat_net.eval()
# Initialize optimizers.
self.optimizer_seg = optim.SGD(self.model.optim_parameters(args),
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
if optimizer_state_dict is not None:
# resume training from checkpoint
self.optimizer_seg.load_state_dict(optimizer_state_dict)
else:
self.optimizer_seg.zero_grad()
# visualizor
self.viz = Visualizer(args)
self.register_buffer('pos_x', torch.arange(self.args.input_size).view(1, 1, 1, -1).repeat(1, 1, self.args.input_size, 1))
self.pos_x = self.pos_x.cuda(args.gpu)
self.register_buffer('pos_y', torch.arange(self.args.input_size).view(1, 1, -1, 1).repeat(1, 1, 1, self.args.input_size).cuda(args.gpu))
self.pos_y = self.pos_y.cuda(args.gpu)
def step(self, batch, current_step):
loss_eqv_value = 0
loss_sc_value = 0
loss_rgb_value = 0
loss_contrastive_value = 0
self.model.train()
self.optimizer_seg.zero_grad()
adjust_learning_rate(self.optimizer_seg, current_step, self.args)
images = batch['img_cj1'].cuda(self.args.gpu)
mask = batch['mask'].cuda(self.args.gpu).float() if 'mask' in batch.keys() else None
images_vgg = batch['img_vgg'].cuda(self.args.gpu)
images_rec = batch['img_rec'].cuda(self.args.gpu)
_, _, pred_low, _ = self.model(images)
pred = self.interp(pred_low)
zoo_feat = self.get_zoo_feat(images_vgg)
zoo_feat = zoo_feat * mask
pred_softmax = torch.softmax(pred, dim=1)
basis = torch.einsum('brhw, bchw -> brc', pred_softmax * mask, zoo_feat)
basis /= einops.reduce(pred_softmax * mask, 'b r h w -> b r 1', 'sum') + 1e-7
loss_sc = 0
for pred_sm_, zoo_feat_, mask_ in zip(pred_softmax * mask, zoo_feat, mask):
loss_sc += loss.consistency_loss(pred_sm_.unsqueeze(0), zoo_feat_.unsqueeze(0), mask_.unsqueeze(0))
loss_sc_value += self.args.lambda_sc * loss_sc.data.cpu().numpy()
loss_rgb = loss.consistency_loss(pred_softmax * mask, images_rec, mask)
loss_rgb_value += self.args.lambda_rgb * loss_rgb.data.cpu().numpy()
# contrastive_loss
loss_contrastive = loss.contrastive_loss(basis[:, :, -self.args.layer_len:] if self.args.layer_len > 0 else basis, self.args.temperature)
loss_contrastive_value += self.args.lambda_contrastive * loss_contrastive.data.cpu().numpy()
# Equivariance Loss
images_cj = batch['img_cj2'].cuda(self.args.gpu)
self.tps.reset_control_points()
images_tps = self.tps(images_cj)
mask_tps = self.tps(mask.float(), padding_mode='zeros')
_, _, pred_low_tps, _ = self.model(images_tps)
pred_tps = self.interp(pred_low_tps)
pred_d = pred.detach()
pred_d.requires_grad = False
# pred_d_rrc = TF.resized_crop(pred_d, *rrc_params, self.args.input_size)
pred_tps_org = self.tps(pred_d, padding_mode='zeros')
loss_eqv = self.kl(F.log_softmax(pred_tps, dim=1),
F.softmax(pred_tps_org, dim=1))
loss_eqv = (loss_eqv * mask_tps).flatten(1).sum(1) / (mask_tps.flatten(1).sum(1) + 1e-7)
loss_eqv = loss_eqv.mean()
loss_eqv_value += self.args.lambda_eqv * loss_eqv.data.cpu().numpy()
# sum all loss terms
total_loss = self.args.lambda_eqv * loss_eqv \
+ self.args.lambda_sc * loss_sc \
+ self.args.lambda_rgb * loss_rgb \
+ self.args.lambda_contrastive * loss_contrastive
total_loss.backward()
# clip gradients
nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip_gradients)
self.optimizer_seg.step()
if current_step % 100 == 0:
# visualize loss curves
self.viz.vis_losses(current_step,
[loss_eqv_value,
loss_sc_value, loss_rgb_value, loss_contrastive_value],
['loss_eqv', 'loss_sc', 'loss_rgb', 'loss_contrastive'])
print('exp = {}'.format(osp.join(self.args.snapshot_dir, wandb.run.name)))
print(('iter = {:8d}/{:8d}, ' +
'loss_eqv = {:.3f}, ' +
'loss_sc = {:.3f}, ' +
'loss_rgb = {:.3f}, ' +
'loss_contrastive = {:.3f}')
.format(current_step, self.args.num_steps,
loss_eqv_value,
loss_sc_value,
loss_rgb_value,
loss_contrastive_value))
def visualize(self, setting, current_step, batch):
self.model.eval()
with torch.no_grad():
images_cpu = batch['img']
mask = batch['mask'].cuda(self.args.gpu) if 'mask' in batch.keys() else None
labels = None if mask is None else batch['mask'][:, 0]
edges = batch['edge'] if 'edge' in batch.keys() else None
if 'landmarks' in batch.keys():
landmarks = batch['landmarks']
elif 'kp' in batch.keys():
landmarks = self.args.input_size(batch['kp']+1)/2
else:
landmarks = None
bbox = batch['bbox'] if 'bbox' in batch.keys() else None
images = images_cpu.cuda(self.args.gpu)
_, _, pred_low, pred_mask_low = self.model(images)
pred = self.interp(pred_low)
images_cj = batch['img_cj2'].cuda(self.args.gpu)
self.tps.reset_control_points()
images_tps = self.tps(images_cj)
mask_tps = self.tps(mask.float(), padding_mode='zeros')
pred_low_tps = self.model(images_tps)[2]
pred_tps = self.interp(pred_low_tps) * mask_tps
output_softmax = torch.softmax(pred, dim=1)
pred_softmax = torch.cat([1 - mask, output_softmax * mask], dim=1)
part_softmax = pred_softmax[:, 1:, :, :]
# normalize
part_softmax /= part_softmax.max(dim=3, keepdim=True)[
0].max(dim=2, keepdim=True)[0]
self.viz.vis_images(setting, current_step, images_cpu, (images_tps.cpu(), pred_tps),
labels, edges, IMG_MEAN, pred=pred_softmax.float())
self.viz.vis_part_heatmaps(
setting, current_step, part_softmax, threshold=0.1, prefix='pred')
self.viz.vis_image(setting, current_step, 'Transformed CJ1', batch['img_cj1'], IMG_MEAN)
self.viz.vis_image(setting, current_step, 'Transformed CJ2', batch['img_cj2'], IMG_MEAN)
# self.viz.vis_image(setting, current_step, 'pred_mask', pred_mask.cpu(), np.array([0, 0, 0]))
if len(batch['seg']) > 0:
self.viz.vis_image(setting, current_step, 'pred_mask', batch['seg'].cpu(), np.array([0, 0, 0]))
if len(landmarks) > 0:
self.viz.vis_landmarks(setting, current_step, images_cpu, IMG_MEAN, pred_softmax, landmarks)
if bbox is not None:
self.viz.vis_bboxes(current_step, bbox)
def get_zoo_feat(self, images_zoo):
with torch.no_grad():
zoo_feats = self.zoo_feat_net(images_zoo)
zoo_feat = torch.cat([self.interp(zoo_feat) for zoo_feat in zoo_feats], dim=1)
return zoo_feat
def save_model(self, path, iter):
torch.save({
'iter': iter,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer_seg.state_dict(),
}, path)
def log_ari(self, testloader, i_iter):
self.model.eval()
gts = []
preds = []
for batch in tqdm(testloader):
images_cpu = batch['img']
gt = batch['seg']
images = images_cpu.cuda(self.args.gpu)
_, _, pred_low, _ = self.model(images)
pred = self.interp(pred_low)
pred_argmax = pred.argmax(dim=1)
gts.append(gt.type(torch.int8))
preds.append(pred_argmax.cpu().type(torch.int8))
gts = torch.cat(gts, 0).flatten()
preds = torch.cat(preds, 0).flatten()
preds = preds[gts != 0]
gts = gts[gts != 0]
ari = adjusted_rand_score_overflow(preds, gts)
nmi = normalized_mutual_info_score(preds, gts)
print(f"ARI: {ari * 100: .2f}, NMI: {nmi * 100: .2f}")
wandb.log({'data/nmi': nmi * 100}, step=i_iter)
wandb.log({'data/ari': ari * 100}, step=i_iter)
def log_nmi(self, trainloader, testloader, i_iter):
self.model.eval()
data = {}
for k, v in self.get_pred_and_gt(trainloader).items():
data[f"train_{k}"] = v
for k, v in self.get_pred_and_gt(testloader).items():
data[f"val_{k}"] = v
nmi = normalized_mutual_info_score(data[f"val_nmi_gt"], data[f"val_nmi_pred"])
ari = adjusted_rand_score(data[f"val_nmi_gt"], data[f"val_nmi_pred"])
errors = np.zeros(3)
for i in range(3):
errors[i] = self.kp_evaluation(data, class_id=i+1)
print(f"NMI: {nmi * 100: .2f} ARI: {ari * 100: .2f} LR1: {errors[0] * 100: .2f} LR2: {errors[1] * 100: .2f} LR3: {errors[2] * 100: .2f}")
wandb.log({'data/nmi': nmi * 100, 'data/ari': ari * 100, 'data/regress_cls_1': errors[0] * 100, 'data/regress_cls_2': errors[1] * 100, 'data/regress_cls_3': errors[2] * 100}, step=i_iter)
def get_pred_and_gt(self, dataset):
loader = DataLoader(LitDataset(dataset), batch_size=8, shuffle=False, num_workers=5, drop_last=False)
with torch.no_grad():
all_preds = []
all_gts = []
all_visible = []
all_labels = []
all_nmi_preds = []
all_nmi_gts = []
for batch in tqdm(loader):
# deal with parts and cropping
image = batch['img'].cuda(self.args.gpu)
mask = batch['mask'].cuda(self.args.gpu)
parts = batch["kp"].float()
res = self.model(image.cuda(self.args.gpu))
part_name_mat = torch.softmax(self.interp(res[2]), dim=1)*mask
fac = 1.0 / torch.clamp_min(part_name_mat.sum(3).sum(2), 1.0)
center_of_mass_x = (part_name_mat * self.pos_x).sum(3).sum(2) * fac
center_of_mass_y = (part_name_mat * self.pos_y).sum(3).sum(2) * fac
pred_parts_raw = torch.cat([center_of_mass_x.unsqueeze(2), center_of_mass_y.unsqueeze(2)], dim=2)
pred_parts = pred_parts_raw / part_name_mat.size(2) # normalize by image_size
gt_parts = (parts[:, :, :2] + 1) / 2.
all_preds.append(pred_parts.cpu())
all_gts.append(gt_parts.cpu())
all_visible.append(parts[:, :, 2].cpu())
all_labels.append(batch["label"].cpu())
visible = parts[:, :, 2] > 0.5
points = parts[:, :, :2].unsqueeze(2)
part_name_mat = self.interp(res[2])
pred_parts_loc = F.grid_sample(part_name_mat.float().cpu(), points, mode='nearest', align_corners=False)
pred_parts_loc = torch.argmax(pred_parts_loc, dim=1).squeeze(2)
pred_parts_loc = pred_parts_loc[visible]
all_nmi_preds.append(pred_parts_loc.cpu().numpy())
gt_parts_loc = torch.arange(parts.shape[1]).unsqueeze(0).repeat(parts.shape[0], 1)
gt_parts_loc = gt_parts_loc[visible]
all_nmi_gts.append(gt_parts_loc.cpu().numpy())
all_preds = torch.cat(all_preds, dim=0).numpy()
all_gts = torch.cat(all_gts, dim=0).numpy()
all_visible = torch.cat(all_visible, dim=0).numpy()
all_labels = torch.cat(all_labels, dim=0).numpy()
all_nmi_preds = np.concatenate(all_nmi_preds, axis=0)
all_nmi_gts = np.concatenate(all_nmi_gts, axis=0)
return {"pred": all_preds, "gt": all_gts,
"nmi_pred": all_nmi_preds, "nmi_gt": all_nmi_gts,
"visible": all_visible, "labels": all_labels, }
def kp_evaluation(self, data, class_id=None):
# https://github.com/NVlabs/SCOPS/blob/master/evaluation/face_evaluation_wild.py
test_fit_kp = np.zeros_like(data["val_gt"])
train_pred_flat = data["train_pred"].reshape(data["train_pred"].shape[0], -1)
val_pred_flat = data["val_pred"].reshape(data["val_pred"].shape[0], -1)
for i in range(data["train_gt"].shape[1]):
scaler_pred = StandardScaler()
scaler_gt = StandardScaler()
train_vis = data["train_visible"][:, i] > 0.5
scaler_pred.fit(train_pred_flat[train_vis])
scaler_gt.fit(data["train_gt"][train_vis, i, :])
train_pred_kp_flat_transform = scaler_pred.transform(train_pred_flat[train_vis])
train_gt_kp_flat_transform = scaler_gt.transform(data["train_gt"][train_vis, i, :])
mdl = LinearRegression(fit_intercept=False)
mdl.fit(train_pred_kp_flat_transform, train_gt_kp_flat_transform)
# test
test_vis = data["val_visible"][:, i] > 0.5
test_pred_kp_flat_transform = scaler_pred.transform(val_pred_flat[test_vis])
test_fit_kp[test_vis, i, :] = scaler_gt.inverse_transform(mdl.predict(test_pred_kp_flat_transform))
mean_error_test = self.mean_error(test_fit_kp, data, "val", class_id)
return mean_error_test
@staticmethod
def mean_error(fit_kp, data, mode, class_id=None):
gt = data[f"{mode}_gt"]
visible = data[f"{mode}_visible"]
diff = (fit_kp - gt)
err = np.linalg.norm(diff, axis=2)
err *= visible
if class_id is not None:
class_mask = data[f"{mode}_labels"] == class_id
err = err[class_mask]
visible = visible[class_mask]
return err.sum() / visible.sum()