Skip to content

How to deal with zero or near-zero mixture weights? #5

@pcarbo

Description

@pcarbo

It doesn't make much sense to update prior covariance matrices with weights that are zero, or near zero. @stephens999 @yunqiyang0215 @zouyuxin Ideas are welcome.

Here's an example (thanks to Yuxin):

set.seed(1)
dat <- readRDS("dat.rds")
f0 <- ud_init(X = as.matrix(dat$data),V = dat$S,U_scaled = list(),
              U_unconstrained = dat$Ulist,n_rank1 = 0)
res <- ud_fit(f0,control = list(unconstrained.update = "teem",
                                resid.update = "none",
                                version = "R"))
# Performing Ultimate Deconvolution on 600 x 20 matrix (udr 0.3-30, "R"):
# data points are i.i.d. (same V)
# prior covariances: 0 scaled, 0 rank-1, 10 unconstrained
# prior covariance updates: none (scaled), none (rank-1), teem (unconstrained)
# mixture weights update: em
# residual covariance update: none
# max 20 updates, conv tol 1.0e-06
# iter          log-likelihood |w - w'| |U - U'| |V - V'|
#    1 -3.0699325059934326e+04 4.65e-01 1.22e+02 0.00e+00
#    2 -3.0330311442511782e+04 9.41e-02 1.11e+02 0.00e+00
#   ...
#   19 -2.9720957242869852e+04 2.79e-05 2.27e-01 0.00e+00
#   20 -2.9720891074856361e+04 7.07e-05 4.21e-01 0.00e+00
print(round(res$w,digits = 6))
#  FLASH_1  FLASH_2  FLASH_3  FLASH_4   tFLASH    PCA_1    PCA_2    PCA_3
# 0.000000 0.000000 0.001667 0.004884 0.229977 0.000000 0.000000 0.000116
#    tPCA       XX
# 0.265002 0.498354

dat.rds.gz

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions