-
Notifications
You must be signed in to change notification settings - Fork 8
/
DSC.cpp
857 lines (743 loc) · 31.6 KB
/
DSC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
#include "Arduino.h"
#include "DSC.h"
#include "DSC_Constants.h"
#include "DSC_Globals.h"
#include <TextBuffer.h>
/// ----- GLOBAL VARIABLES -----
/*
* The existence of global variables are "declared" in DSC_Global.h, so that each
* source file that includes the header knows about them. The variables must then be
* “defined” once in one of the source files (this one).
* The following structures contains all of the global variables used by the ISR to
* communicate with the DSC.clkCalled() object. You cannot pass parameters to an
* ISR so these values must be global. The fields are defined in DSC_Globals.h
*/
timing_t timing;
keybus_t panel;
keybus_t keypad;
keysend_t keysend;
// ----- Input/Output Pins (Global, defined in DSC_Globals.h) -----
byte CLK; // Keybus Yellow (Clock Line)
byte DTA_IN; // Keybus Green (Data Line via V divider)
byte DTA_OUT; // Keybus Green Output (Data Line through driver)
byte LED; // LED pin on the arduino
// Prototype for interrupt handler, called on clock line change
void clkCalled_Handler();
// Prototype for wordCpy, to copy an array to another array of equal length (len)
void wordCpy(byte *a, byte *b, byte len);
// Prototype for wordSet, to reset each element of an array of length (len) to int b
void wordSet(byte *a, int b, byte len);
//TextBuffer tempByte(12); // Initialize TextBuffer.h for temp generic byte buffer
TextBuffer wordBuf(WORD_BITS); // Initialize TextBuffer.h for word text buffer
TextBuffer pMsg(MSG_BITS); // Initialize TextBuffer.h for panel message
TextBuffer kMsg(MSG_BITS); // Initialize TextBuffer.h for keypad message
TextBuffer sendBuf(52); // Initialize TextBuffer.h for sent keypad word
/// --- END GLOBAL VARIABLES ---
DSC::DSC(void)
{
// ----- Time Variables -----
// Volatile variables, modified within ISR, based on micros()
timing.intervalTimer = 0;
timing.clockChange = 0;
timing.lastChange = 0;
timing.lastRise = 0; // NOT USED YET
timing.lastFall = 0; // NOT USED YET
// Time variables, based on millis()
timing.lastStatus = 0;
timing.lastData = 0;
// Class level variables to hold time elements
int yy = 0, mm = 0, dd = 0, HH = 0, MM = 0, SS = 0;
bool timeAvailable = false; // Changes to true when kCmd == 0xa5 to
// indicate that the time elements are valid
// ----- Input/Output Pins (DEFAULTS) ------
// These can be changed prior to DSC.begin() using functions below
CLK = 3; // Keybus Yellow (Clock Line)
DTA_IN = 4; // Keybus Green (Data Line via V divider)
DTA_OUT = 8; // Keybus Green Output (Data Line through driver)
LED = 13; // LED pin on the arduino Uno
// ----- Keybus Word Byte Array Vars -----
// Panel Array Data
wordSet(panel.newArray, 0, ARR_SIZE);
wordSet(panel.array, 0, ARR_SIZE);
wordSet(panel.oldArray, 0, ARR_SIZE);
panel.bit = 0, panel.elem = 0;
// Keypad Receive Data
wordSet(keypad.newArray, 0, ARR_SIZE);
wordSet(keypad.array, 0, ARR_SIZE);
wordSet(keypad.oldArray, 0, ARR_SIZE);
keypad.bit = 0, keypad.elem = 0;
// Keypad Send Data
wordSet(keysend.array, 0, 4); // Send arrays only need 4 bytes of data MAX
keysend.bit = 0, keysend.elem = 0;
keysend.waiting = false, keysend.ready = true, keysend.sent = false;
// ----- Keybus Word Length Variables -----
panel.newArrayLen = 0, panel.arrayLen = 0;
keypad.newArrayLen = 0, keypad.arrayLen = 0;
keysend.arrayLen = 0;
// ----- Keybus Command Byte Values -----
panel.cmd = 0, keypad.cmd = 0;
}
int DSC::addSerial(void)
{
// Not yet implemented
}
void DSC::begin(void)
{
pinMode(CLK, INPUT);
pinMode(DTA_IN, INPUT);
pinMode(DTA_OUT, OUTPUT);
pinMode(LED, OUTPUT);
//tempByte.begin(); // Begin the generic tempByte buffer, allocate memory
wordBuf.begin(); // Begin the word buffer, allocate memory
pMsg.begin(); // Begin the panel message buffer, allocate memory
kMsg.begin(); // Begin the keypad message buffer, allocate memory
sendBuf.begin(); // Begin the keypad send word buffer, allocate memory
// Set the interrupt pin
intrNum = digitalPinToInterrupt(CLK);
// Attach interrupt on the CLK pin
attachInterrupt(intrNum, clkCalled_Handler, CHANGE);
// Changed from RISING to CHANGE to read both panel and keypad data
}
/* This is the interrupt handler used by this class. It is called every time the input
* pin changes from high to low or from low to high.
*
* The function is not a member of the DSC class, it must be in the global scope in order
* to be called by attachInterrupt() from within the DSC class.
*/
void clkCalled_Handler()
{
digitalWrite(DTA_OUT, 0); // Reset the data out line
timing.clockChange = micros(); // Save the current clock change time
timing.intervalTimer =
(timing.clockChange - timing.lastChange); // Determine interval since last clock change
if (timing.intervalTimer > (NEW_WORD_INTV - 200)) {
wordCpy(keypad.newArray, keypad.array, ARR_SIZE); // Save the complete keypad raw data bytes array
keypad.arrayLen = keypad.newArrayLen; // Copy the word length
wordSet(keypad.newArray, 0, ARR_SIZE); // Reset the raw data bytes keypad array being built
keypad.newArrayLen = 0; // Reset the new keypad word length to zero
keypad.bit = 0; // Reset the keypad bit counter to zero
keypad.elem = 0; // Reset the keypad byte counter to zero
}
timing.lastChange = timing.clockChange; // Re-save the current change time as last change time
if (digitalRead(CLK)) { // If clock line is going HIGH, this is PANEL data
timing.lastRise = timing.lastChange; // Set the lastRise time
if (panel.elem < ARR_SIZE) { // Limit the array to X bytes
//delayMicroseconds(120); // Delay for 120 us to get a valid data line read
panel.newArray[panel.elem] <<= 1;
if (digitalRead(DTA_IN)) panel.newArray[panel.elem] |= 1;
panel.newArrayLen++;
// Increment the panel elem (byte) and bit counters as required
if (panel.elem == 0 and panel.bit == 7) {
panel.elem = 1; panel.bit = 6; } // Set the pByte/Bit counter for zero padding
if (panel.bit < 7)
panel.bit++;
else {
panel.elem++; panel.bit = 0; } // Increment pByte counter if 8 bits
}
}
else { // Otherwise, it's going LOW, this is KEYPAD data
timing.lastFall = timing.lastChange; // Set the lastFall time
if (keysend.waiting && keypad.newArrayLen == 0) {
// Send virtual keypad data
byte writeBit = 0;
if (keysend.bit == 0) if (keysend.array[keysend.elem] > 127) {
keysend.array[keysend.elem] -= 128; writeBit = 1; }
if (keysend.bit == 1) if (keysend.array[keysend.elem] > 63) {
keysend.array[keysend.elem] -= 64; writeBit = 1; }
if (keysend.bit == 2) if (keysend.array[keysend.elem] > 31) {
keysend.array[keysend.elem] -= 32; writeBit = 1; }
if (keysend.bit == 3) if (keysend.array[keysend.elem] > 15) {
keysend.array[keysend.elem] -= 16; writeBit = 1; }
if (keysend.bit == 4) if (keysend.array[keysend.elem] > 7) {
keysend.array[keysend.elem] -= 8; writeBit = 1; }
if (keysend.bit == 5) if (keysend.array[keysend.elem] > 3) {
keysend.array[keysend.elem] -= 4; writeBit = 1; }
if (keysend.bit == 6) if (keysend.array[keysend.elem] > 1) {
keysend.array[keysend.elem] -= 2; writeBit = 1; }
if (keysend.bit == 7) if (keysend.array[keysend.elem] > 0) {
keysend.array[keysend.elem] -= 1; writeBit = 1; }
if (writeBit == 0) digitalWrite(DTA_OUT, 1); // Pull the data out line low
sendBuf.print(writeBit); // Write the bit to the send buffer
// Increment the keysend elem (byte) and bit counters as required
if (keysend.bit < 7)
keysend.bit++;
else {
keysend.elem++; keysend.bit = 0; } // Increment kByte counter if 8 bits
if (keysend.elem == 4 && keysend.bit == 7) { // Sending is complete
keysend.waiting = false;
keysend.ready = true;
keysend.sent = true;
}
}
else if (keypad.elem < ARR_SIZE) { // Limit the array to X bytes
//delayMicroseconds(200); // Delay for 300 us to get a valid data line read
keypad.newArray[keypad.elem] <<= 1;
if (digitalRead(DTA_IN)) keypad.newArray[keypad.elem] |= 1;
keypad.newArrayLen++;
// Increment the keypad elem (byte) and bit counters as required
if (keypad.bit < 7)
keypad.bit++;
else {
keypad.elem++; keypad.bit = 0; } // Increment kByte counter if 8 bits
}
}
}
// ----- The following are DSC class level functions -----
int DSC::process(void)
{
// ------------ Get/process incoming data -------------
panel.cmd = 0;
keypad.cmd = 0;
timeAvailable = false; // Set the time element status to invalid
// ----------------- Turn on/off LED ------------------
if ((millis() - timing.lastStatus) > 500)
digitalWrite(LED, 0); // Turn LED OFF (no recent status command [0x05])
else
digitalWrite(LED, 1); // Turn LED ON (recent status command [0x05])
/*
* The normal clock frequency is 1 Hz or one cycle every ms (1000 us)
* The new word marker is clock high for about 15 ms (15000 us)
* If the interval is longer than the required amount (NEW_WORD_INTV + 200 us),
* and the panel word in progress (pBuild) is more than 8 characters long,
* process the panel and keypad words, otherwise return failure (0).
*/
if (timing.intervalTimer < (NEW_WORD_INTV + 200)) return -1; // Still building word
if (panel.newArrayLen < 8) return -2; // Complete word too short
wordCpy(panel.newArray, panel.array, ARR_SIZE); // Save the complete panel raw data bytes array
panel.arrayLen = panel.newArrayLen; // Copy the word length
wordSet(panel.newArray, 0, ARR_SIZE); // Reset the raw data bytes panel array being built
panel.newArrayLen = 0; // Reset the new panel word length to zero
panel.bit = 0; // Reset the panel bit counter to zero
panel.elem = 0; // Reset the panel byte counter to zero
panel.cmd = decodePanel(); // Decode the panel binary, return command byte, or 0
keypad.cmd = decodeKeypad(); // Decode the keypad binary, return command byte, or 0
if (panel.cmd && keypad.cmd) return 3; // Return 3 if both were decoded
else if (keypad.cmd) return 2; // Return 2 if keypad word was decoded
else if (panel.cmd) return 1; // Return 1 if panel word was decoded
else return 0; // Return failure if none were decoded
}
byte DSC::decodePanel(void)
{
pMsg.clear(); // Initialize panel message for output
// ------------- Process the Panel Data Word ---------------
byte cmd = panel.array[0]; // Get the panel Cmd (data word type/command)
if (wordCmp(panel.array, panel.oldArray, ARR_SIZE) || cmd == 0x00) {
// Skip this word if the data hasn't changed, or pCmd is empty (0x00)
return 0; // Return failure
}
else {
// This seems to be a valid word, try to process it
timing.lastData = millis(); // Record the time (last data word was received)
wordCpy(panel.array, panel.oldArray, ARR_SIZE); // This is a new/good word, save it
// ------ DEBUG FILTERING ------
//if (cmd != 0x05 && cmd != 0x34 && cmd != 0xa5) return 0;
// -----------------------------
/*
* This section needs your help! If you have time, please try to figure out
* what unknown command codes/words mean, and what data they contain!
*/
if (cmd == 0x05)
{
timing.lastStatus = millis(); // Record the time for LED logic
pMsg.print(F("[Status] "));
if (byteToInt(panel.array,16,1,1)) pMsg.print(F("Ready"));
else {
if (byteToInt(panel.array,15,1,1)) pMsg.print(F("Armed"));
else pMsg.print(F("Not Ready")); }
if (byteToInt(panel.array,10,1,1)) pMsg.print(F(", Fire"));
if (byteToInt(panel.array,12,1,1)) pMsg.print(F(", Error"));
if (byteToInt(panel.array,13,1,1)) pMsg.print(F(", Bypass"));
if (byteToInt(panel.array,14,1,1)) pMsg.print(F(", Memory"));
if (byteToInt(panel.array,17,1,1)) pMsg.print(F(", Program"));
if (byteToInt(panel.array,29,1,1)) pMsg.print(F(", Power Fail")); // ??? - maybe 28 or 20?
// ---------- These are in question ----------
if (byteToInt(panel.array,21,2,1) == 2) pMsg.print(F(", Exit Delay"));
if (byteToInt(panel.array,21,2,1) == 3) pMsg.print(F(", Alarm"));
}
if (cmd == 0xa5)
{
pMsg.print(F("[Info] "));
int y3 = byteToInt(panel.array,9,4,1);
int y4 = byteToInt(panel.array,13,4,1);
yy = (String(y3) + String(y4)).toInt();
mm = byteToInt(panel.array,19,4,1);
dd = byteToInt(panel.array,23,5,1);
HH = byteToInt(panel.array,28,5,1);
MM = byteToInt(panel.array,33,6,1);
timeAvailable = true; // Set the time element status to valid
byte arm = byteToInt(panel.array,41,2,1);
byte master = byteToInt(panel.array,43,1,1);
byte user = byteToInt(panel.array,43,6,1); // 0-36
if (arm == 0x02) {
pMsg.print(F("Armed"));
user = user - 0x19;
}
if (arm == 0x03) {
pMsg.print(F("Disarmed"));
}
if (arm > 0) {
if (master) pMsg.print(F(", Master Code"));
else pMsg.print(F(", User Code"));
user += 1; // shift to 1-32, 33, 34
if (user > 34) user += 5; // convert to system code 40, 41, 42
pMsg.print(" "); pMsg.print(user);
}
}
if (cmd == 0x27)
{
pMsg.print(F("[Zones A] "));
int zones = byteToInt(panel.array,8+1+8+8+8+8,8,1);
if (zones & 1) pMsg.print("1 ");
if (zones & 2) pMsg.print("2 ");
if (zones & 4) pMsg.print("3 ");
if (zones & 8) pMsg.print("4 ");
if (zones & 16) pMsg.print("5 ");
if (zones & 32) pMsg.print("6 ");
if (zones & 64) pMsg.print("7 ");
if (zones & 128) pMsg.print("8 ");
if (zones == 0) pMsg.print("Secure ");
}
if (cmd == 0x2d)
{
pMsg.print(F("[Zones B] "));
int zones = byteToInt(panel.array,8+1+8+8+8+8,8,1);
if (zones & 1) pMsg.print("9 ");
if (zones & 2) pMsg.print("10 ");
if (zones & 4) pMsg.print("11 ");
if (zones & 8) pMsg.print("12 ");
if (zones & 16) pMsg.print("13 ");
if (zones & 32) pMsg.print("14 ");
if (zones & 64) pMsg.print("15 ");
if (zones & 128) pMsg.print("16 ");
if (zones == 0) pMsg.print("Secure ");
}
if (cmd == 0x34)
{
pMsg.print(F("[Zones C] "));
int zones = byteToInt(panel.array,8+1+8+8+8+8,8,1);
if (zones & 1) pMsg.print("17 ");
if (zones & 2) pMsg.print("18 ");
if (zones & 4) pMsg.print("19 ");
if (zones & 8) pMsg.print("20 ");
if (zones & 16) pMsg.print("21 ");
if (zones & 32) pMsg.print("22 ");
if (zones & 64) pMsg.print("23 ");
if (zones & 128) pMsg.print("24 ");
if (zones == 0) pMsg.print("Secure ");
}
if (cmd == 0x3e)
{
pMsg.print(F("[Zones D] "));
int zones = byteToInt(panel.array,8+1+8+8+8+8,8,1);
if (zones & 1) pMsg.print("25 ");
if (zones & 2) pMsg.print("26 ");
if (zones & 4) pMsg.print("27 ");
if (zones & 8) pMsg.print("28 ");
if (zones & 16) pMsg.print("29 ");
if (zones & 32) pMsg.print("30 ");
if (zones & 64) pMsg.print("31 ");
if (zones & 128) pMsg.print("32 ");
if (zones == 0) pMsg.print("Secure ");
}
// --- The other 32 zones for a 1864 panel need to be added after this ---
// - the hex command codes for these are unknown as far as I know
if (cmd == 0x11)
pMsg.print(F("[Keypad Query] "));
if (cmd == 0x0a)
pMsg.print(F("[Panel Program Mode] "));
if (cmd == 0x5d)
pMsg.print(F("[Alarm Memory Group 1] "));
if (cmd == 0x63)
pMsg.print(F("[Alarm Memory Group 2] "));
if (cmd == 0x64)
pMsg.print(F("[3 Beeps] ")); //[Beep Command Group 1]
if (cmd == 0x69)
pMsg.print(F("[Beep Command Group 2] "));
if (cmd == 0x39)
pMsg.print(F("[Unknown Command] "));
if (cmd == 0xb1)
pMsg.print(F("[Zone Configuration] "));
return cmd; // Return success
}
}
byte DSC::decodeKeypad(void)
{
kMsg.clear(); // Initialize keypad message for output
// ------------- Process the Keypad Data Word ---------------
byte cmd = keypad.array[0]; // Get the keypad Cmd (data word type/command)
String btnStr = F("[Button] ");
if ((keypad.array[0] == 255 && keypad.array[1] == 255 &&
keypad.array[2] == 255) || (keypad.array[0] == 0x00)) {
// Skip this word if kArray is all 1's or kCmd is empty (0x00)
return 0; // Return failure
}
else {
// This seems to be a valid word, try to process it
timing.lastData = millis(); // Record the time (last data word was received)
wordCpy(keypad.array, keypad.oldArray, ARR_SIZE); // This is a new/good word, save it
byte kByte2 = keypad.array[1];
byte kByte3 = keypad.array[2];
byte kByte4 = keypad.array[3];
// Interpret the data
if (cmd == kOut) {
if (kByte2 == one) {
kMsg.print(btnStr); kMsg.print("1"); }
else if (kByte2 == two) {
kMsg.print(btnStr); kMsg.print("2"); }
else if (kByte2 == three) {
kMsg.print(btnStr); kMsg.print("3"); }
else if (kByte2 == four) {
kMsg.print(btnStr); kMsg.print("4"); }
else if (kByte2 == five) {
kMsg.print(btnStr); kMsg.print("5"); }
else if (kByte2 == six) {
kMsg.print(btnStr); kMsg.print("6"); }
else if (kByte2 == seven) {
kMsg.print(btnStr); kMsg.print("7"); }
else if (kByte2 == eight) {
kMsg.print(btnStr); kMsg.print("8"); }
else if (kByte2 == nine) {
kMsg.print(btnStr); kMsg.print("9"); }
else if (kByte2 == aster) {
kMsg.print(btnStr); kMsg.print("*"); }
else if (kByte2 == zero) {
kMsg.print(btnStr); kMsg.print("0"); }
else if (kByte2 == pound) {
kMsg.print(btnStr); kMsg.print("#"); }
else if (kByte2 == stay) {
kMsg.print(btnStr); kMsg.print(F("Stay")); }
else if (kByte2 == away) {
kMsg.print(btnStr); kMsg.print(F("Away")); }
else if (kByte2 == chime) {
kMsg.print(btnStr); kMsg.print(F("Chime")); }
else if (kByte2 == reset) {
kMsg.print(btnStr); kMsg.print(F("Reset")); }
else if (kByte2 == kExit) {
kMsg.print(btnStr); kMsg.print(F("Exit")); }
else if (kByte2 == lArrow) { // These arrow commands don't work every time
kMsg.print(btnStr); kMsg.print(F("<")); }
else if (kByte2 == rArrow) { // They are often reverse for unknown reasons
kMsg.print(btnStr); kMsg.print(F(">")); }
else if (kByte2 == kOut)
kMsg.print(F("[Keypad Response]"));
else {
kMsg.print("[Keypad] 0x");
kMsg.print(String(kByte2, HEX)); kMsg.print(" (Unknown)");
}
}
if (cmd == fire) {
kMsg.print(btnStr); kMsg.print(F("Fire")); }
if (cmd == aux) {
kMsg.print(btnStr); kMsg.print(F("Aux")); }
if (cmd == panic) {
kMsg.print(btnStr); kMsg.print(F("Panic")); }
return cmd; // Return success
}
}
const char* DSC::get_pnlFormat(void)
{
if (!panel.cmd) return NULL; // return failure
// Formats the panel word array into bytes of binary data in the form:
// 8 1 8 8 8 8 8 etc, and returns a pointer to the buffer
wordBuf.clear();
wordBuf.print("[Panel] ");
int bitsRem = panel.arrayLen;
if (panel.arrayLen > 8) {
wordBuf.print(byteToBin(panel.array[0], 8)); bitsRem -= 8;
wordBuf.print(" ");
wordBuf.print(panel.array[1]); bitsRem -= 1;
wordBuf.print(" ");
int grps = (panel.arrayLen - 2) / 8;
for(int i=0;i<grps;i++) {
if (bitsRem > 7) {
wordBuf.print(byteToBin(panel.array[i + 2], 8));
wordBuf.print(" "); }
else wordBuf.print(byteToBin(panel.array[i + 2], bitsRem));
bitsRem -= 8;
}
}
else
wordBuf.print(byteToBin(panel.array[0], bitsRem));
if (pnlChkSum()) wordBuf.print(" (OK)");
return wordBuf.getBuffer(); // return the pointer
}
const char* DSC::get_kpdFormat(void)
{
if (!keypad.cmd) return NULL; // return failure
// Formats the keypad word array into bytes of binary data in the form:
// 8 8 8 8 8 8 etc, and returns a pointer to the buffer
wordBuf.clear();
wordBuf.print("[Keypad] ");
int bitsRem = keypad.arrayLen;
if (keypad.arrayLen > 8) {
int grps = keypad.arrayLen / 8;
for(int i=0;i<grps;i++) {
if (bitsRem > 7) {
wordBuf.print(byteToBin(keypad.array[i], 8));
wordBuf.print(" "); }
else wordBuf.print(byteToBin(keypad.array[i], bitsRem));
bitsRem -= 8;
}
}
else
wordBuf.print(byteToBin(keypad.array[0], bitsRem));
return wordBuf.getBuffer(); // return the pointer
}
const char* DSC::get_pnlArray(void)
{
if (!panel.cmd) return NULL; // return failure
// Formats the panel word array into bytes in the form:
// 8 1 8 8 8 8 8 etc, and returns a pointer to the buffer
wordBuf.clear();
wordBuf.print("[Panel] ");
if (panel.arrayLen > 8) {
wordBuf.print(panel.array[0]);
wordBuf.print(" ");
wordBuf.print(panel.array[1]);
wordBuf.print(" ");
int grps = (panel.arrayLen - 2) / 8;
for(int i=0;i<grps;i++) {
wordBuf.print(panel.array[i + 2]);
if (i<(grps-1)) wordBuf.print(" ");
}
}
else
wordBuf.print(panel.array[0]);
if (pnlChkSum()) wordBuf.print(" (OK)");
return wordBuf.getBuffer(); // return the pointer
}
const char* DSC::get_kpdArray(void)
{
if (!keypad.cmd) return NULL; // return failure
// Formats the keypad word array into bytes in the form:
// 8 8 8 8 8 8 etc, and returns a pointer to the buffer
wordBuf.clear();
wordBuf.print("[Keypad] ");
if (keypad.arrayLen > 8) {
int grps = keypad.arrayLen / 8;
for(int i=0;i<grps;i++) {
wordBuf.print(keypad.array[i]);
if (i<(grps-1)) wordBuf.print(" ");
}
}
else
wordBuf.print(keypad.array[0]);
return wordBuf.getBuffer(); // return the pointer
}
const char* DSC::get_pnlRaw(void)
{
if (!panel.cmd) return NULL; // return failure
// Puts the raw binary word into a buffer and returns a pointer to the buffer
wordBuf.clear();
wordBuf.print("[Panel] ");
int bitsRem = panel.arrayLen;
if (panel.arrayLen > 8) {
wordBuf.print(byteToBin(panel.array[0], 8)); bitsRem -= 8;
wordBuf.print(panel.array[1]); bitsRem -= 1;
int grps = (panel.arrayLen - 2) / 8;
for(int i=0;i<grps;i++) {
if (bitsRem > 7) wordBuf.print(byteToBin(panel.array[i + 2], 8));
else wordBuf.print(byteToBin(panel.array[i + 2], bitsRem));
bitsRem -= 8;
}
}
else
wordBuf.print(byteToBin(panel.array[0], bitsRem));
if (pnlChkSum()) wordBuf.print(" (OK)");
return wordBuf.getBuffer(); // return the pointer
}
const char* DSC::get_kpdRaw(void)
{
if (!keypad.cmd) return NULL; // return failure
// Puts the raw binary word into a buffer and returns a pointer to the buffer
wordBuf.clear();
wordBuf.print("[Keypad] ");
int bitsRem = keypad.arrayLen;
if (keypad.arrayLen > 8) {
int grps = keypad.arrayLen / 8;
for(int i=0;i<grps;i++) {
if (bitsRem > 7) wordBuf.print(byteToBin(keypad.array[i], 8));
else wordBuf.print(byteToBin(keypad.array[i], bitsRem));
bitsRem -= 8;
}
}
else
wordBuf.print(byteToBin(keypad.array[0], bitsRem));
return wordBuf.getBuffer(); // return the pointer
}
int DSC::pnlChkSum(void)
{
// Sums all but the last full byte (minus padding) and compares
// the remainder (modulo) to last byte
// returns 0 if not valid, and the checksum if it's valid
int cSum = 0;
if (panel.arrayLen >= 17) {
cSum += panel.array[0];
int grps = (panel.arrayLen - 9) / 8;
for(int i=0;i<grps;i++) {
if (i<(grps-1))
cSum += panel.array[i + 2];
else {
byte cSumMod = cSum % 256;
byte lastByte = panel.array[i + 2];
if (cSumMod == lastByte) return cSumMod;
}
}
}
return 0;
}
const char* DSC::get_pMsg(void)
{
if (!panel.cmd) return NULL; // return failure
return pMsg.getBuffer(); // return the pointer
}
const char* DSC::get_kMsg(void)
{
if (!keypad.cmd) return NULL; // return failure
return kMsg.getBuffer(); // return the pointer
}
byte DSC::get_pCmd(void)
{
return panel.cmd; // return pCmd
}
byte DSC::get_kCmd(void)
{
return keypad.cmd; // return kCmd
}
bool DSC::send_key(byte aa, byte bb, byte cc, byte dd)
{
if (!keysend.ready) return 0; // return failure
if (aa == 0 && bb == 0 && cc == 0 && dd == 0) return 0;
sendBuf.clear(); // clear the send buffer
keysend.array[0] = aa;
keysend.array[1] = bb;
keysend.array[2] = cc;
keysend.array[3] = dd;
keysend.waiting = true; // update the keysend status
keysend.ready = false;
return 1; // return success
}
bool DSC::get_time(void)
{
return timeAvailable; // return kCmd
}
bool DSC::timeout(void)
{
bool s = false;
if ((millis() - timing.lastData) > NO_DATA_TIMEOUT) s = true;
timing.lastData = millis(); // Reset the timer
return s; // return timeout status
}
unsigned int DSC::byteToInt(byte* dataArr, int offset, int dataLen, bool padding)
{
// Returns the value of the binary data in the byte from "offset" to "dataLen" as an int
int byteNum = 0; // Int automatically rounds down
// If padding is true, then the second byte should only be one bit long (panel data)
if (padding && offset > 7) {
if (offset == 8) {
byteNum = 1;
offset = 0;
}
if (offset > 8) {
byteNum = (offset + 7) / 8;
offset = offset - ((byteNum - 1) * 8 + 1);
}
}
// If padding is false, there is no zero padding bit (keypad data), or if there
// is padding and the offset is less <= 7, this is the first byte
else {
byteNum = offset / 8;
offset = offset - (byteNum * 8);
}
// Convert the byte, and the one following, to 16 binary digits
// - needs both bytes in case the data spans more than one byte
String bothBytes = byteToBin(dataArr[byteNum], 8) + byteToBin(dataArr[byteNum + 1], 8);
int iBuf = 0;
for(int j=0;j<dataLen;j++) {
iBuf <<= 1;
if (bothBytes[offset+j] == '1') iBuf |= 1;
}
return iBuf;
}
/*
const char* DSC::binToChar(String &dataStr, int offset, int endData)
{
tempByte.clear();
// Returns a char array of the binary data in the String from "offset" to "endData"
tempByte.print(dataStr[offset]);
for(int j=1;j<(endData-offset);j++) {
tempByte.print(dataStr[offset+j]);
}
return tempByte.getBuffer();
}
*/
const String DSC::byteToBin(byte b, byte digits)
{
// Returns the X bit binary representation of byte "b" with leading zeros
// where X is the number of binary digits up to 8
if (digits > 8) digits = 8;
int zeros = abs(digits)-String(b, BIN).length();
String zStr = "";
for (int i=0;i<zeros;i++) zStr += "0";
return zStr + String(b, BIN);
}
void DSC::setCLK(int p)
{
// Sets the clock pin, must be called prior to begin()
CLK = p;
}
void DSC::setDTA_IN(int p)
{
// Sets the data in pin, must be called prior to begin()
DTA_IN = p;
}
void DSC::setDTA_OUT(int p)
{
// Sets the data out pin, must be called prior to begin()
DTA_OUT = p;
}
void DSC::setLED(int p)
{
// Sets the LED pin, must be called prior to begin()
LED = p;
}
size_t DSC::write(uint8_t character)
{
// Code to display letter when given the ASCII code for it
// Not yet implemented
}
size_t DSC::write(const char *str)
{
// Code to display string when given a pointer to the beginning --
// remember, the last character will be null, so you can use a while(*str).
// You can increment str (str++) to get the next letter
// Not yet implemented
}
size_t DSC::write(const uint8_t *buffer, size_t size)
{
// Code to display array of chars when given a pointer to the beginning
// of the array and a size -- this will not end with the null character
// Not yet implemented
}
bool DSC::wordCmp(byte *a, byte *b, byte len)
{
// test each element to be the same. if not, return false
for (byte n=0;n<len;n++) if (a[n]!=b[n]) return 0;
// if it has not returned yet, they are equal
return 1;
}
/*
/ These last two functions are also not members of the DSC class. They are in the
/ global scope so they can be called by the interrupt handler
*/
void wordCpy(byte *a, byte *b, byte len)
{
// copy each element in byte array a of length len to byte array b
for (byte n=0;n<len;n++) b[n]=a[n];
}
void wordSet(byte *a, int b, byte len)
{
// set each element in byte array a of length len to int b
for (byte n=0;n<len;n++) a[n]=b;
}
///////// END //////////