|
1 |
| -Get Started with Amazon SageMaker |
| 1 | +Introduction to Amazon SageMaker |
2 | 2 | =================================
|
3 | 3 |
|
4 |
| -You have several options for how you can use SageMaker. |
| 4 | +You have several options for how you can use Amazon SageMaker. |
5 | 5 |
|
6 |
| -1. IDE: SageMaker Studio |
7 |
| -2. Console: SageMaker Notebook Instances |
8 |
| -3. Command line & SDK: AWS CLI, boto3, & SageMaker Python SDK |
9 |
| -4. 3rd party integrations: Kubeflow & Kubernetes operators |
| 6 | +1. IDE: `SageMaker Studio <https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html>`_ |
| 7 | +2. Console: `SageMaker Notebook Instances <https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html>`_ |
| 8 | +3. Command line & SDK: `AWS CLI <https://docs.aws.amazon.com/cli/latest/reference/sagemaker/index.html#cli-aws-sagemaker>`_, `boto3 <https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html>`_, & `SageMaker Python SDK <https://sagemaker.readthedocs.io/>`_ |
| 9 | +4. 3rd party integrations: `Kubeflow <https://docs.aws.amazon.com/sagemaker/latest/dg/kubernetes-sagemaker-components-for-kubeflow-pipelines.html>`_ & `Kubernetes operators <https://docs.aws.amazon.com/sagemaker/latest/dg/kubernetes-sagemaker-operators.html>`_ |
10 | 10 |
|
11 | 11 | If you're new to SageMaker we recommend starting with more feature-rich SageMaker Studio.
|
12 | 12 | It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations.
|
@@ -42,33 +42,3 @@ Get started with SageMaker Notebook Instances
|
42 | 42 | <div style="position: relative; padding-bottom: 5%; height: 0; overflow: hidden; max-width: 100%; height: auto;">
|
43 | 43 | <iframe width="560" height="315" src="https://www.youtube.com/embed/X5CLunIzj3U" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
|
44 | 44 | </div>
|
45 |
| - |
46 |
| - |
47 |
| -Introduction to applying machine learning |
48 |
| -========================================= |
49 |
| - |
50 |
| -.. toctree:: |
51 |
| - :maxdepth: 1 |
52 |
| - |
53 |
| - ../introduction_to_applying_machine_learning/video_game_sales/video-game-sales-xgboost |
54 |
| - ../introduction_to_applying_machine_learning/breast_cancer_prediction/Breast Cancer Prediction |
55 |
| - ../introduction_to_applying_machine_learning/xgboost_customer_churn/xgboost_customer_churn |
56 |
| - |
57 |
| - |
58 |
| -Training |
59 |
| -================================= |
60 |
| - |
61 |
| -.. toctree:: |
62 |
| - :maxdepth: 1 |
63 |
| - |
64 |
| - ../introduction_to_amazon_algorithms/xgboost_mnist/xgboost_mnist |
65 |
| - ../introduction_to_applying_machine_learning/ensemble_modeling/EnsembleLearnerCensusIncome |
66 |
| - |
67 |
| - |
68 |
| -Inference |
69 |
| -========= |
70 |
| - |
71 |
| -.. toctree:: |
72 |
| - :maxdepth: 1 |
73 |
| - |
74 |
| - ../introduction_to_amazon_algorithms/blazingtext_hosting_pretrained_fasttext/blazingtext_hosting_pretrained_fasttext |
0 commit comments