-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclass_predictor.py
131 lines (107 loc) · 3.7 KB
/
class_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pandas as pd
import numpy as np
import os
import gc
import xgboost as xgb
import re
from sklearn.model_selection import train_test_split
INPUT_DIR = "./input/"
OUTPUT_DIR = "./output/"
max_num_features = 10
pad_size = 1
boundary_letter = -1
space_letter = 0
max_data_size = 320 # 320000
df = pd.read_csv(INPUT_DIR+'en_train.csv', encoding='utf8')
x_data = []
y_data = pd.factorize(df['class'])
labels = y_data[1]
y_data = y_data[0]
gc.collect()
for x in df['before'].values:
x_row = np.ones(max_num_features, dtype=int) * space_letter
for xi, i in zip(list(str(x)), np.arange(max_num_features)):
x_row[i] = ord(xi)
x_data.append(x_row)
df_test = pd.read_csv(INPUT_DIR+'en_test_2.csv', encoding='utf8')
x_test = []
for x in df_test['before'].values:
x_row = np.ones(max_num_features, dtype=int) * space_letter
for xi, i in zip(list(str(x)), np.arange(max_num_features)):
x_row[i] = ord(xi)
x_test.append(x_row)
def context_window_transform(data, pad_size):
pre = np.zeros(max_num_features)
pre = [pre for x in np.arange(pad_size)]
data = pre + data + pre
neo_data = []
for i in np.arange(len(data) - pad_size * 2):
row = []
for x in data[i: i + pad_size * 2 + 1]:
row.append([boundary_letter])
row.append(x)
row.append([boundary_letter])
neo_data.append([int(x) for y in row for x in y])
return neo_data
x_data = x_data[:max_data_size]
y_data = y_data[:max_data_size]
x_data = np.array(context_window_transform(x_data, pad_size))
gc.collect()
x_data = np.array(x_data)
y_data = np.array(y_data)
x_test = x_test[:max_data_size]
x_test = np.array(context_window_transform(x_test, pad_size))
x_test = np.array(x_test)
print('Total number of samples:', len(x_data))
print('Use: ', max_data_size)
print('Total number of test samples:', len(x_test))
print('x_data sample:')
print(x_data[0])
print('y_data sample:')
print(y_data[0])
print('labels:')
print(labels)
x_train = x_data
y_train = y_data
gc.collect()
x_train, x_valid, y_train, y_valid = train_test_split(
x_train, y_train, test_size=0.1, random_state=2017)
gc.collect()
num_class = len(labels)
dtrain = xgb.DMatrix(x_train, label=y_train)
dvalid = xgb.DMatrix(x_valid, label=y_valid)
watchlist = [(dvalid, 'valid'), (dtrain, 'train')]
dtest = xgb.DMatrix(x_test)
param = {'objective': 'multi:softmax',
'eta': '0.3', 'max_depth': 10,
'silent': 1, 'nthread': -1,
'num_class': num_class,
'eval_metric': 'merror'}
model = xgb.train(param, dtrain, 50, watchlist, early_stopping_rounds=20,
verbose_eval=10)
gc.collect()
pred = model.predict(dvalid)
pred = [labels[int(x)] for x in pred]
y_valid = [labels[x] for x in y_valid]
x_valid = [[chr(x) for x in y[2 + max_num_features: 2 +
max_num_features * 2]] for y in x_valid]
x_valid = [''.join(x) for x in x_valid]
x_valid = [re.sub('a+$', '', x) for x in x_valid]
pred_test = model.predict(dtest)
pred_test = [labels[int(x)] for x in pred_test]
x_test = [[chr(x) for x in y[2 + max_num_features: 2 +
max_num_features * 2]] for y in x_test]
x_test = [''.join(x) for x in x_test]
x_test = [re.sub('a+$', '', x) for x in x_test]
gc.collect()
df_pred = pd.DataFrame(columns=['data', 'predict', 'target'])
df_pred['data'] = x_valid
df_pred['predict'] = pred
df_pred['target'] = y_valid
df_pred.to_csv(os.path.join(OUTPUT_DIR, 'pred_valid.csv'), encoding='utf8')
df_pred_test = pd.DataFrame(columns=['data', 'predict'])
df_pred_test['data'] = x_test
df_pred_test['predict'] = pred_test
df_pred_test.to_csv(os.path.join(
OUTPUT_DIR, 'pred_test.csv'), encoding='utf8')
model.save_model(os.path.join(OUTPUT_DIR, 'model.json'))