-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
133 lines (116 loc) · 5.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime, date
from nsepy.symbols import get_symbol_list
import pandas as pd
from com.sainath.ema.EmaUtils import EmaUtils
from com.sainath.price.PriceUtils import getPrice
from com.sainath.psar.PsarUtils import PsarUtils
from com.sainath.psar.Symbols import Symbols
symbolData = Symbols()
symboldf = get_symbol_list()
print(symboldf)
def psarSignal(symbol):
print("Symbol => " + str(datetime.now().date()))
date_object = datetime.strptime(str(datetime.now().date()), '%Y-%m-%d').date()
data = getPrice(symbol=symbol, today=date_object, numdays=90)
print(data)
# Plot the closing price
if not data.empty:
psarObj = PsarUtils()
data = psarObj.getPsar(stocks=data)
data.to_csv('SAR-full.csv')
cross_over_data = psarObj.getCrossOver(stocks=data)
if not cross_over_data.empty:
if not data.empty:
psar_based_stock_list = psarObj.filterBasedOnCloseValue(stocks=data)
if not psar_based_stock_list.empty:
psar_based_stock_list = psar_based_stock_list.dropna()
print("Filtered Stocks => " + str(psar_based_stock_list))
if psar_based_stock_list['Close'].item() > psar_based_stock_list['SAR'].item():
psar_based_stock_list['Signal'] = "Buy"
else:
psar_based_stock_list['Signal'] = "Sell"
return psar_based_stock_list
else:
print("DataFrame empty after filter")
return pd.DataFrame()
else:
return pd.DataFrame()
else:
print("No Cross Over Data")
return pd.DataFrame()
else:
print("No Price Data")
return pd.DataFrame()
# return psar_based_stock_list
# print("------Final List-------")
# print(psar_based_stock_list)
# data.SAR.plot(figsize=(10,5))
# plt.grid()
# plt.show()
# Calculate parabolic sar
# data['SAR'] = talib.SAR(data.High, data.Low, acceleration=0.02, maximum=0.2)
# data.tail().to_csv('Sar_data.csv')
# Plot Parabolic SAR with close price
# data[['Close', 'SAR']][:500].plot(figsize=(10,5))
# plt.grid()
# plt.show()
# data[['Close','SAR']].tail().to_csv('Data-SAR.csv')
stockList = pd.DataFrame(
columns=['Symbol', 'Series', 'Prev Close', 'Open', 'High', 'Low', 'Last', 'Close', 'VWAP', 'Volume', 'Turnover',
'Trades', 'Deliverable Volume', '%Deliverble', 'SAR', 'Signal'],
index=['Date'])
emaExtractedRecords = pd.DataFrame(
columns=['Symbol', 'Series', 'Prev Close', 'Open', 'High', 'Low', 'Last', 'Close', 'VWAP', 'Volume', 'Turnover',
'Trades', 'Deliverable Volume', '%Deliverble', 'SAR', 'Signal'],
index=['Date'])
symbols = []
counter = 0
def asyncTask(symbolforExtraction):
global stockList
lastestData = psarSignal(symbol=symbolforExtraction)
if not lastestData.empty:
stockList = pd.concat([stockList, lastestData])
def emaExtraction(symbol):
global psarFilteredStocks, emaExtractedRecords
tempdf = psarFilteredStocks[psarFilteredStocks.Symbol == symbol]
if not tempdf.empty:
print("Filtered based on symbol : " + str(tempdf))
emaUtils = EmaUtils()
ema200 = emaUtils.calculateEMA(symbol=symbol, df=tempdf, numdays=200)
ema9 = emaUtils.calculateEMA(symbol=symbol, df=tempdf, numdays=9)
ema21 = emaUtils.calculateEMA(symbol=symbol, df=tempdf, numdays=21)
print("Results => Close Price: " + str(tempdf['Close'].item()) + "; 9EMA: " + str(ema9) + "; 21EMA: " + str(
ema21) + "; 200EMA: " + str(ema200))
if tempdf.Close.item() > ema9 > ema21 > ema200:
print("EMA Filter satisfied: Close Price > ema9 > ema21 > ema200")
tempdf['ema9'] = ema9
tempdf['ema21'] = ema21
tempdf['ema200'] = ema200
emaExtractedRecords = pd.concat([emaExtractedRecords, tempdf])
else:
print("EMA Filter not satisfied")
else:
print("Symbol " + symbol + " not found!!")
if __name__ == '__main__':
for ind in symboldf.index:
symbolforExtraction = symboldf['SYMBOL'][ind]
print("type(symbolforExtraction) =>" + str(type(symbolforExtraction)))
symbol = symbolforExtraction
if symbol == 'DVL':
print('Skip DVL stock')
else:
print(symbolforExtraction)
symbols.insert(counter, symbolforExtraction)
counter = counter + 1
with ThreadPoolExecutor(max_workers=30) as exe:
exe.map(asyncTask, symbols)
stockList = stockList.dropna()
print("Stokclist => " + str(stockList))
stockList.loc[stockList['Signal'] == 'Buy'].to_csv('finalized-list.csv')
psarFilteredStocks = stockList.loc[stockList['Signal'] == 'Buy']
#emaExtraction("63MOONS")
with ThreadPoolExecutor(max_workers=30) as exe:
exe.map(emaExtraction, psarFilteredStocks['Symbol'])
print("Final list of stocks after Ema Extraction => " + str(emaExtractedRecords.dropna()))
emaExtractedRecords.dropna().to_csv('finalized-list.csv')