-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubs.F90
1539 lines (1270 loc) · 70.4 KB
/
subs.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
MODULE SUBS
!-----------------------------------------------------------------------------
! This module contains functions used to perform spherical harmonics
! transformation and writing output files
!-----------------------------------------------------------------------------
#include <fftw3.f>
! OPTIONS:
! FFTW_ESTIMATE - a fast but probably inefficient FFT plan
! FFTW_MEASURE - does a few FFTs to gauge the machine speed
! FFTW_PATIENT - searches a range of algorithms to find the best one
! FFTW_EXHAUSTIVE - does a complete algorithm search, including some unlikely ones, to find the fastest. NB - may be slow to compute the plan.
INTEGER, PARAMETER :: TRANSFORM_OPTIMISATION = FFTW_PATIENT
INTEGER(KIND=8) :: PLAN_FFT_R2HC
INTEGER, PARAMETER :: NTHETA_GRID_CONTOUR_GMT = 100, NPHI_GRID_CONTOUR_GMT = 200 !number of points for contour plots in GMT
INTEGER, PARAMETER :: GMT_THETA = 30, GMT_PHI = 30 !grid spacing for arrows in GMT plots
INTEGER, PARAMETER :: NUMBER_RANDOM_START_PTS = 1000
INTEGER, PARAMETER :: TOROIDAL_FLOW = 1, POLOIDAL_FLOW = 2
TYPE HARMONIC_STRUCTURE
INTEGER L, M
INTEGER SINCOS
END TYPE HARMONIC_STRUCTURE
INTEGER, PARAMETER :: EXTRA_LONG_REAL = 8, LONG_REAL = 8
REAL(KIND=LONG_REAL), ALLOCATABLE, DIMENSION(:, :) :: FFT_TRANSFORM_ARRAY
REAL(KIND=8), PARAMETER :: CMB_RADIUS = 3485.0E3_8, ES_RADIUS = 6371.0E3_8, Pi = 3.14159265358979_8
INTEGER, PARAMETER :: COSINE_HARMONIC = 1, SINE_HARMONIC = 2
CONTAINS
SUBROUTINE GAUWTS(NTHPTS, GAUX, GAUW)
IMPLICIT NONE
!-----------------------------------------------------------------------------
! Computes the integration points and weights needed for Legendre transforms:
!
! INPUTS:
! NTHPTS (INTEGER)
! number of points in theta direction
! GAUX ( REAL( KIND= LONG_REAL) ), dimension(1:NTHPTS)
! The abscissae of the Gauss-Legendre integration, in cos(theta)
! GAUW ( REAL( KIND= LONG_REAL) ), dimension(1:NTHPTS)
! The weights of the Gauss-Legendre integration
!
!-----------------------------------------------------------------------------
INTEGER NTHPTS
REAL(KIND=EXTRA_LONG_REAL) GAUX(1:NTHPTS), GAUW(1:NTHPTS)
INTENT(IN) NTHPTS
INTENT(OUT) GAUX, GAUW
!
INTEGER M, I, J
REAL(KIND=EXTRA_LONG_REAL) XM, XL, P1, P2, P3, EPS, PP, Z, Z1
PARAMETER(EPS=1.0E-13_LONG_REAL)
REAL(KIND=LONG_REAL), PARAMETER :: X1 = -1.0_LONG_REAL, X2 = 1.0_LONG_REAL
! ....... the roots are symmetric in the interval so need only find
! half of them.
M = (NTHPTS + 1)/2
XM = 0.5_LONG_REAL*(X2 + X1)
XL = 0.5_LONG_REAL*(X2 - X1)
! ........start looping over the desired roots .......................
DO I = 1, M
Z = COS(PI*(REAL(I, KIND=EXTRA_LONG_REAL) - 0.25_EXTRA_LONG_REAL)/ &
(REAL(NTHPTS, KIND=EXTRA_LONG_REAL) + 0.5_EXTRA_LONG_REAL))
! ..... starting with this approximation to the Ith root, we
! enter the main loop of refinement by Newton's method.
100 CONTINUE
P1 = 1.0_LONG_REAL
P2 = 0.0_LONG_REAL
! ........... Loop up the recurrence relation to get the
! legendre Polynomial evaluated at Z.
DO J = 1, NTHPTS
P3 = P2
P2 = P1
P1 = ((2.0_EXTRA_LONG_REAL*J - 1.0_EXTRA_LONG_REAL)*Z*P2 - (J - 1.0_EXTRA_LONG_REAL)*P3)/REAL(J, KIND=EXTRA_LONG_REAL)
END DO
! ..................... finish recurrence relation loop ...
! ... P1 is now the desired Legendre Polynomial. We now compute PP,
! its derivative by a standard relation involving also P2, the
! polynomial of one order lower.
PP = NTHPTS*(Z*P1 - P2)/(Z*Z - 1.0_EXTRA_LONG_REAL)
Z1 = Z
Z = Z1 - P1/PP
IF (ABS(Z - Z1) .GT. EPS) GOTO 100
! ...........scale the root to the desired interval .................
GAUX(I) = XM - XL*Z
! ...........and add its symmetric counterpart ......................
GAUX(NTHPTS + 1 - I) = XM + XL*Z
! ...........calculate the weight ...................................
GAUW(I) = 2.0_EXTRA_LONG_REAL*XL/((1.0_EXTRA_LONG_REAL - Z*Z)*PP*PP)
! ...........and add its symmetric counterpart ......................
GAUW(NTHPTS + 1 - I) = GAUW(I)
END DO
! ......... end looping over the desired roots .......................
RETURN
END SUBROUTINE GAUWTS
!*********************************************************************
SUBROUTINE GET_LEGENDRE_FUNCTIONS(COSTHETA_ARR, LMAX, MMAX, Y, dY)
IMPLICIT NONE
!-----------------------------------------------------------------------------
! Computes the required derivatives of the associated Legendre functions in EXTRA_LONG_REAL precision
! The arrays Y and dY are returned, which contain the elements
! P_l^m and d P_l^m/d theta in the harmonic ordering where
! the l's are consecutive
! Dimensions of Y etc. are: (grid, HARMONICS)
!
! Uses the recursion relations in A&S modified for fully normalised associated Legendre functions to compute
! P_m^m, P_m+1^m and then P_l^m.....
!
! Uses the recursion relation involving the derivative and multiple orders to compute d P_l^m / d(theta)
!-----------------------------------------------------------------------------
REAL(KIND=EXTRA_LONG_REAL) :: COSTHETA_ARR(1:)
INTEGER :: LMAX, MMAX
REAL(KIND=EXTRA_LONG_REAL) :: Y(1:, 1:), dY(1:, 1:)
REAL(KIND=EXTRA_LONG_REAL) :: SINTHETA, PMM, PMM1, COSTHETA, FAC1, FAC2, SINSQINV, FACTOR
INTEGER :: NUM, INDEX, I, M, J, L
DO I = 1, SIZE(COSTHETA_ARR)
COSTHETA = COSTHETA_ARR(I)
SINTHETA = SQRT((1.0_EXTRA_LONG_REAL - COSTHETA)*(1.0_EXTRA_LONG_REAL + COSTHETA))
SINSQINV = 1.0_EXTRA_LONG_REAL/((1.0_EXTRA_LONG_REAL - COSTHETA)*(1.0_EXTRA_LONG_REAL + COSTHETA))
DO M = 0, MMAX
! Compute P_m^m
PMM = 1.0_EXTRA_LONG_REAL
NUM = 1
DO J = 1, M
PMM = PMM*SINTHETA*REAL(NUM, KIND=EXTRA_LONG_REAL)/SQRT(REAL(NUM*(NUM + 1), KIND=EXTRA_LONG_REAL))
NUM = NUM + 2
END DO
! renormalise to "fully normalised" functions
PMM = PMM*SQRT(0.5_EXTRA_LONG_REAL*REAL(2*M + 1, KIND=EXTRA_LONG_REAL))
IF (M .eq. LMAX) THEN
INDEX = SIZE(Y, 2)
Y(I, INDEX) = PMM !P_LMAX^LMAX
EXIT !end of loop
END IF
L = M
INDEX = M*LMAX + (M*(3 - M))/2 + 1 + (L - M)
Y(I, INDEX) = PMM
! Compute P_{m+1}^m
PMM1 = COSTHETA*REAL(2*M + 1, KIND=EXTRA_LONG_REAL)*PMM
! renormalise to "fully normalised" functions
PMM1 = PMM1*SQRT(REAL(2*M + 3, KIND=EXTRA_LONG_REAL))/REAL(2*M + 1, KIND=EXTRA_LONG_REAL)
IF (M .eq. LMAX - 1) THEN
INDEX = SIZE(Y, 2) - 1
Y(I, INDEX) = PMM1 ! P_LMAX^LMAX-1
CYCLE !next M
END IF
L = M + 1
INDEX = M*LMAX + (M*(3 - M))/2 + 1 + (L - M)
Y(I, INDEX) = PMM1 ! P_M+1^M
DO L = M + 2, LMAX
INDEX = M*LMAX + (M*(3 - M))/2 + 1 + (L - M)
FAC1 = REAL((2*L + 1)*(L - M), KIND=EXTRA_LONG_REAL)/REAL((2*L - 1)*(L + M), KIND=EXTRA_LONG_REAL)
FAC1 = SQRT(FAC1)
FAC2 = REAL((2*L + 1)*(L - M)*(L - M - 1), KIND=EXTRA_LONG_REAL)/ &
REAL((2*L - 3)*(L + M)*(L + M - 1), KIND=EXTRA_LONG_REAL)
FAC2 = SQRT(FAC2)
Y(I, INDEX) = (FAC1*COSTHETA*REAL(2*L - 1, KIND=EXTRA_LONG_REAL)*Y(I, INDEX - 1) - &
FAC2*REAL(L + M - 1, KIND=EXTRA_LONG_REAL)*Y(I, INDEX - 2))/REAL(L - M, KIND=EXTRA_LONG_REAL)
END DO
END DO !M
! Compute derivatives:
DO M = 0, MMAX
DO L = M, LMAX
INDEX = M*LMAX + (M*(3 - M))/2 + 1 + (L - M)
IF (M .eq. L) THEN
dY(I, INDEX) = REAL(L, KIND=EXTRA_LONG_REAL)*COSTHETA/SINTHETA*Y(I, INDEX)
ELSE
dY(I, INDEX) = REAL(L, KIND=EXTRA_LONG_REAL)*COSTHETA/SINTHETA*Y(I, INDEX) - &
REAL(L + M, KIND=EXTRA_LONG_REAL)* &
SQRT(REAL((2*L + 1)*(L - M), KIND=EXTRA_LONG_REAL)/REAL((2*L - 1)*(L + M), KIND=EXTRA_LONG_REAL))* &
Y(I, INDEX - 1)/SINTHETA
END IF
END DO
END DO
END DO !I
! Renormalise so that the harmonics are Schmidt quasi-normalised.
DO M = 0, MMAX
DO L = M, LMAX
INDEX = M*LMAX + (M*(3 - M))/2 + 1 + (L - M)
IF (M .eq. 0) THEN
FACTOR = SQRT(2.0_EXTRA_LONG_REAL/REAL(2*L + 1, KIND=EXTRA_LONG_REAL))
ELSE
FACTOR = SQRT(4.0_EXTRA_LONG_REAL/REAL(2*L + 1, KIND=EXTRA_LONG_REAL))
END IF
Y(:, INDEX) = Y(:, INDEX)*FACTOR
DY(:, INDEX) = DY(:, INDEX)*FACTOR
END DO
END DO
! PRINT*, 'here', Y(1,9), COSTHETA_ARR(1), ACOS( COSTHETA_ARR(1))
RETURN
END SUBROUTINE GET_LEGENDRE_FUNCTIONS
SUBROUTINE EVALUATE_B_R_GRID(NTHETA_GRID, &
NPHI_GRID, &
GAUSS, &
HARMONICS, &
LMAX_B_OBS, &
LMAX, &
B_R, &
GRAD_H_B_R, &
ALF, &
DALF, &
ONE_DIV_SINTHETA)
!-----------------------------------------------------------------------------
! Evaluates B_r on the CMB on the defined (theta,phi) grid, along with its horizontal derivatives.
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: NTHETA_GRID, NPHI_GRID, LMAX, LMAX_B_OBS
REAL(KIND=EXTRA_LONG_REAL) :: GAUSS(1:), B_R(1:, 0:), GRAD_H_B_R(1:, 0:, 1:)
REAL(KIND=EXTRA_LONG_REAL) :: ALF(1:, 1:), DALF(1:, 1:), ONE_DIV_SINTHETA(1:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
INTEGER :: I, INDEX_PLM, I_THETA, I_PHI
REAL(KIND=EXTRA_LONG_REAL) :: PHI_DEP, DERV_PHI_DEP, PHI
GRAD_H_B_R(:, :, :) = 0.0_EXTRA_LONG_REAL
B_R(:, :) = 0.0_EXTRA_LONG_REAL
DO I_THETA = 1, NTHETA_GRID
DO I_PHI = 0, NPHI_GRID - 1
PHI = I_PHI*2.0_EXTRA_LONG_REAL*Pi/REAL(NPHI_GRID, KIND=EXTRA_LONG_REAL)
DO I = 1, SIZE(HARMONICS)
IF (HARMONICS(I)%L .GT. LMAX_B_OBS) CYCLE
IF (HARMONICS(I)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I)%M*PHI)
DERV_PHI_DEP = HARMONICS(I)%M*COS(HARMONICS(I)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I)%M*PHI)
DERV_PHI_DEP = -HARMONICS(I)%M*SIN(HARMONICS(I)%M*PHI)
END IF
INDEX_PLM = HARMONICS(I)%M*LMAX + (HARMONICS(I)%M*(3 - HARMONICS(I)%M))/2 + 1 + (HARMONICS(I)%L - HARMONICS(I)%M)
B_R(I_THETA, I_PHI) = B_R(I_THETA, I_PHI) + &
GAUSS(I)*(ES_RADIUS/CMB_RADIUS)**(HARMONICS(I)%L + 2)* &
(HARMONICS(I)%L + 1)*ALF(I_THETA, INDEX_PLM)*PHI_DEP
GRAD_H_B_R(I_THETA, I_PHI, 1) = GRAD_H_B_R(I_THETA, I_PHI, 1) + &
GAUSS(I)*(ES_RADIUS/CMB_RADIUS)**(HARMONICS(I)%L + 2)* &
(HARMONICS(I)%L + 1)*DALF(I_THETA, INDEX_PLM)*PHI_DEP/CMB_RADIUS
GRAD_H_B_R(I_THETA, I_PHI, 2) = GRAD_H_B_R(I_THETA, I_PHI, 2) + &
GAUSS(I)*(ES_RADIUS/CMB_RADIUS)**(HARMONICS(I)%L + 2)* &
(HARMONICS(I)%L + 1)*ALF(I_THETA, INDEX_PLM)*DERV_PHI_DEP* &
ONE_DIV_SINTHETA(I_THETA)/CMB_RADIUS
END DO
END DO
END DO
RETURN
END SUBROUTINE EVALUATE_B_R_GRID
SUBROUTINE EVALUATE_B_SURF_GRID(NTHETA_GRID, &
NPHI_GRID, &
GAUSS, &
HARMONICS, &
LMAX_B_OBS, &
LMAX, &
B_R_SURF, &
B_T_SURF, &
B_P_SURF, &
ALF, &
DALF, &
ONE_DIV_SINTHETA)
!-----------------------------------------------------------------------------
! Evaluates B at the Earth's surface on the defined (theta,phi) grid
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: NTHETA_GRID, NPHI_GRID, LMAX, LMAX_B_OBS
REAL(KIND=EXTRA_LONG_REAL) :: GAUSS(1:), B_R_SURF(1:, 0:)
REAL(KIND=EXTRA_LONG_REAL) :: B_T_SURF(1:, 0:), B_P_SURF(1:, 0:), ALF(1:, 1:)
REAL(KIND=EXTRA_LONG_REAL) :: DALF(1:, 1:), ONE_DIV_SINTHETA(1:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
INTEGER :: I, INDEX_PLM, I_THETA, I_PHI
REAL(KIND=EXTRA_LONG_REAL) :: PHI_DEP, DERV_PHI_DEP, PHI
B_R_SURF(:, :) = 0.0_EXTRA_LONG_REAL
B_T_SURF(:, :) = 0.0_EXTRA_LONG_REAL
B_P_SURF(:, :) = 0.0_EXTRA_LONG_REAL
DO I_THETA = 1, NTHETA_GRID
DO I_PHI = 0, NPHI_GRID - 1
PHI = I_PHI*2.0_EXTRA_LONG_REAL*Pi/REAL(NPHI_GRID, KIND=EXTRA_LONG_REAL)
DO I = 1, SIZE(HARMONICS)
IF (HARMONICS(I)%L .GT. LMAX_B_OBS) CYCLE
IF (HARMONICS(I)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I)%M*PHI)
DERV_PHI_DEP = HARMONICS(I)%M*COS(HARMONICS(I)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I)%M*PHI)
DERV_PHI_DEP = -HARMONICS(I)%M*SIN(HARMONICS(I)%M*PHI)
END IF
INDEX_PLM = HARMONICS(I)%M*LMAX + (HARMONICS(I)%M*(3 - HARMONICS(I)%M))/2 + 1 + (HARMONICS(I)%L - HARMONICS(I)%M)
B_R_SURF(I_THETA, I_PHI) = B_R_SURF(I_THETA, I_PHI) + &
GAUSS(I)*(HARMONICS(I)%L + 1)*ALF(I_THETA, INDEX_PLM)*PHI_DEP
B_T_SURF(I_THETA, I_PHI) = B_T_SURF(I_THETA, I_PHI) - &
GAUSS(I)*DALF(I_THETA, INDEX_PLM)*PHI_DEP
B_P_SURF(I_THETA, I_PHI) = B_P_SURF(I_THETA, I_PHI) - &
GAUSS(I)*ALF(I_THETA, INDEX_PLM)*DERV_PHI_DEP*ONE_DIV_SINTHETA(I_THETA)
END DO
END DO
END DO
RETURN
END SUBROUTINE EVALUATE_B_SURF_GRID
SUBROUTINE EVALUATE_NABLA2_B_R_GRID(NTHETA_GRID, NPHI_GRID, GAUSS, HARMONICS, LMAX_B_OBS, LMAX, NABLA2_B_R, ALF)
!-----------------------------------------------------------------------------
! caclulate horizontal laplacian of function B_r at the CMB from the gauss coefficients
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: NTHETA_GRID, NPHI_GRID, LMAX, LMAX_B_OBS
REAL(KIND=EXTRA_LONG_REAL) :: GAUSS(1:), NABLA2_B_R(1:, 0:), ALF(1:, 1:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
INTEGER :: I, INDEX_PLM, I_THETA, I_PHI
REAL(KIND=EXTRA_LONG_REAL) :: PHI_DEP, DERV_PHI_DEP, PHI
NABLA2_B_R(:, :) = 0.0_LONG_REAL
DO I_THETA = 1, NTHETA_GRID
DO I_PHI = 0, NPHI_GRID - 1
PHI = I_PHI*2.0_LONG_REAL*Pi/REAL(NPHI_GRID, KIND=EXTRA_LONG_REAL)
DO I = 1, SIZE(HARMONICS)
IF (HARMONICS(I)%L .GT. LMAX_B_OBS) CYCLE
IF (HARMONICS(I)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I)%M*PHI)
DERV_PHI_DEP = HARMONICS(I)%M*COS(HARMONICS(I)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I)%M*PHI)
DERV_PHI_DEP = -HARMONICS(I)%M*SIN(HARMONICS(I)%M*PHI)
END IF
INDEX_PLM = HARMONICS(I)%M*LMAX + &
(HARMONICS(I)%M*(3 - HARMONICS(I)%M))/2 + &
1 + (HARMONICS(I)%L - HARMONICS(I)%M)
NABLA2_B_R(I_THETA, I_PHI) = NABLA2_B_R(I_THETA, I_PHI) - &
GAUSS(I)*(1/CMB_RADIUS)**2*(ES_RADIUS/CMB_RADIUS)**(HARMONICS(I)%L + 2)* &
HARMONICS(I)%L*(HARMONICS(I)%L + 1)**2*ALF(I_THETA, INDEX_PLM)*PHI_DEP
END DO
END DO
END DO
END SUBROUTINE EVALUATE_NABLA2_B_R_GRID
SUBROUTINE EVALUATE_U_H_SINGLE_HARMONIC(NTHETA_GRID, &
NPHI_GRID, &
I_HARMONIC, &
I_TYPE, &
U_H, &
DIV_H_U_H, &
ALF, &
DALF, &
HARMONICS, &
LMAX, &
ONE_DIV_SIN_THETA, &
COSTHETA_GRID)
!-----------------------------------------------------------------------------
! Evaluates u_H on the defined (theta,phi) grid, along with its horizontal divergence.
! if harmonic is -1, then evaluate all harmonics.
! div_h . u_h = d(u_theta)/d theta + cot(theta) * u_theta + 1/sin(theta) * d(u_phi)/d phi
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: NTHETA_GRID, NPHI_GRID, I_HARMONIC, I_TYPE, LMAX
REAL(KIND=EXTRA_LONG_REAL) :: U_H(1:, 0:, 1:), DIV_H_U_H(1:, 0:), ALF(1:, 1:), DALF(1:, 1:)
REAL(KIND=EXTRA_LONG_REAL) :: ONE_DIV_SIN_THETA(1:), COSTHETA_GRID(1:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
INTEGER :: INDEX, I_THETA, I_PHI, J, LOWER_HARMONIC, UPPER_HARMONIC
REAL(KIND=EXTRA_LONG_REAL) :: PHI, DERV_PHI_DEP, PHI_DEP
U_H(:, :, :) = 0.0_LONG_REAL
IF (I_TYPE .eq. TOROIDAL_FLOW) THEN
DO I_THETA = 1, NTHETA_GRID
DO I_PHI = 0, NPHI_GRID - 1
PHI = I_PHI*2.0_LONG_REAL*Pi/REAL(NPHI_GRID, KIND=EXTRA_LONG_REAL)
J = I_HARMONIC
INDEX = HARMONICS(J)%M*LMAX + (HARMONICS(J)%M*(3 - HARMONICS(J)%M))/2 + 1 + (HARMONICS(J)%L - HARMONICS(J)%M)
IF (HARMONICS(J)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(J)%M*PHI)
DERV_PHI_DEP = HARMONICS(J)%M*COS(HARMONICS(J)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(J)%M*PHI)
DERV_PHI_DEP = -HARMONICS(J)%M*SIN(HARMONICS(J)%M*PHI)
END IF
U_H(I_THETA, I_PHI, 1) = DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
U_H(I_THETA, I_PHI, 2) = -PHI_DEP*DALF(I_THETA, INDEX)
END DO
END DO
DIV_H_U_H(:, :) = 0.0_LONG_REAL
! surface divergence of toroidal flow is zero.
ELSE ! poloidal flow
DO I_THETA = 1, NTHETA_GRID
DO I_PHI = 0, NPHI_GRID - 1
PHI = I_PHI*2.0_LONG_REAL*Pi/REAL(NPHI_GRID, KIND=EXTRA_LONG_REAL)
J = I_HARMONIC
INDEX = HARMONICS(J)%M*LMAX + (HARMONICS(J)%M*(3 - HARMONICS(J)%M))/2 + 1 + (HARMONICS(J)%L - HARMONICS(J)%M)
IF (HARMONICS(J)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(J)%M*PHI)
DERV_PHI_DEP = HARMONICS(J)%M*COS(HARMONICS(J)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(J)%M*PHI)
DERV_PHI_DEP = -HARMONICS(J)%M*SIN(HARMONICS(J)%M*PHI)
END IF
U_H(I_THETA, I_PHI, 1) = PHI_DEP*DALF(I_THETA, INDEX)
U_H(I_THETA, I_PHI, 2) = DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
DIV_H_U_H(I_THETA, I_PHI) = -ALF(I_THETA, INDEX)*PHI_DEP* &
REAL(HARMONICS(J)%L*(HARMONICS(J)%L + 1), KIND=LONG_REAL)/CMB_RADIUS
! surface divergence of poloidal flow is -l(l+1)/r for each harmonic
END DO
END DO
! IF( I_THETA .eq. 1 .and. I_PHI .eq. 1) THEN
! PRINT*, U_H(1,1,1:2), DIV_H_U_H(1,1)
! STOP
! ENDIF
END IF
!PRINT*,'HERE', DERV_PHI_DEP , -M * SIN( HARMONICS(I_HARMONIC)%M * PHI)
RETURN
END SUBROUTINE EVALUATE_U_H_SINGLE_HARMONIC
SUBROUTINE EVALUATE_U_H(NTHETA_GRID, &
NPHI_GRID, &
SPEC_TOR, SPEC_POL, &
U_H, &
DIV_H_U_H, &
ALF, &
DALF, &
HARMONICS, &
LMAX_U, &
LMAX_SV, &
ONE_DIV_SIN_THETA)
!-----------------------------------------------------------------------------
! Evaluates u_H on the defined (theta,phi) grid
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: NTHETA_GRID, NPHI_GRID, I_HARMONIC, I_TYPE, LMAX_U, LMAX_SV
REAL(KIND=EXTRA_LONG_REAL) :: U_H(1:, 0:, 1:), ALF(1:, 1:), DALF(1:, 1:), ONE_DIV_SIN_THETA(1:), SPEC_TOR(1:), SPEC_POL(1:)
REAL(KIND=EXTRA_LONG_REAL) :: DIV_H_U_H(1:, 0:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
INTEGER :: INDEX, I_THETA, I_PHI, J
REAL(KIND=EXTRA_LONG_REAL) :: PHI, DERV_PHI_DEP, PHI_DEP
U_H(:, :, :) = 0.0_LONG_REAL
DIV_H_U_H(:, :) = 0.0_LONG_REAL
DO I_THETA = 1, NTHETA_GRID
DO I_PHI = 0, NPHI_GRID - 1
PHI = I_PHI*2.0_LONG_REAL*Pi/REAL(NPHI_GRID, KIND=EXTRA_LONG_REAL)
DO I_HARMONIC = 1, LMAX_U*(LMAX_U + 2)
INDEX = HARMONICS(I_HARMONIC)%M*LMAX_SV + &
(HARMONICS(I_HARMONIC)%M*(3 - HARMONICS(I_HARMONIC)%M))/2 + &
1 + (HARMONICS(I_HARMONIC)%L - HARMONICS(I_HARMONIC)%M)
IF (HARMONICS(I_HARMONIC)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = HARMONICS(I_HARMONIC)%M*COS(HARMONICS(I_HARMONIC)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = -HARMONICS(I_HARMONIC)%M*SIN(HARMONICS(I_HARMONIC)%M*PHI)
END IF
! toroidal
U_H(I_THETA, I_PHI, 1) = U_H(I_THETA, I_PHI, 1) + &
SPEC_TOR(I_HARMONIC)*DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
U_H(I_THETA, I_PHI, 2) = U_H(I_THETA, I_PHI, 2) - &
SPEC_TOR(I_HARMONIC)*PHI_DEP*DALF(I_THETA, INDEX)
! poloidal
U_H(I_THETA, I_PHI, 1) = U_H(I_THETA, I_PHI, 1) + &
SPEC_POL(I_HARMONIC)*PHI_DEP*DALF(I_THETA, INDEX)
U_H(I_THETA, I_PHI, 2) = U_H(I_THETA, I_PHI, 2) + &
SPEC_POL(I_HARMONIC)*DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
DIV_H_U_H(I_THETA, I_PHI) = DIV_H_U_H(I_THETA, I_PHI) - &
SPEC_POL(I_HARMONIC)*ALF(I_THETA, INDEX)*PHI_DEP* &
REAL(HARMONICS(I_HARMONIC)%L*(HARMONICS(I_HARMONIC)%L + 1), KIND=EXTRA_LONG_REAL)/CMB_RADIUS
END DO
END DO
END DO
RETURN
END SUBROUTINE EVALUATE_U_H
SUBROUTINE REAL_2_SPEC(REAL_SPACE, SPEC, LMAX, LMAX_TRANSFORM, HARMONICS, NPHI_GRID, NTHETA_GRID, LEGENDRE_INV)
!-----------------------------------------------------------------------------
! Projects a scalar quantity defined on a grid onto Schmidt quasi-normalised spherical harmonics
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: NTHETA_GRID, NPHI_GRID
REAL(KIND=EXTRA_LONG_REAL) :: REAL_SPACE(1:, 0:), SPEC(1:), LEGENDRE_INV(1:, 1:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
! Computes the spherical harmonic coefficients from Y_0^0 up to L,M = LMAX_TRANSFORM.
! LMAX is the maximum degree with which the array SPEC is defined. If LMAX_TRANSFORM < LMAX then the SPEC array is padded with zeros.
REAL(KIND=EXTRA_LONG_REAL) :: PHI_FAC
INTEGER :: INDEX_PLM, I
INTEGER :: LMAX, LMAX_TRANSFORM, MMAX, I_HARMONIC
! REAL_SPACE(:,:) = 1.0
! PRINT*, 'SLOW1', SUM( REAL_SPACE(1,:) ) / NPHI_GRID
! FFT
FFT_TRANSFORM_ARRAY(1:NTHETA_GRID, 0:NPHI_GRID - 1) = REAL_SPACE(:, :)
CALL DFFTW_EXECUTE(PLAN_FFT_R2HC)
REAL_SPACE(:, :) = FFT_TRANSFORM_ARRAY(1:NTHETA_GRID, 0:NPHI_GRID - 1)
!PRINT*, 'FAST1', REAL_SPACE(1,0)
! PRINT*, REAL_SPACE(:,1); PRINT*, REAL_SPACE(:,1) * 1.0_LONG_REAL * Pi / REAL( NPHI_GRID, KIND = LONG_REAL); STOP !; PRINT*, LEGENDRE_INV(1:NTHETA_GRID,19); PRINT*, SUM( REAL_SPACE(:,2) * LEGENDRE_INV(1:NTHETA_GRID,19)); STOP
! Legendre transform
SPEC(:) = 0.0_LONG_REAL
DO I = 1, LMAX_TRANSFORM*(LMAX_TRANSFORM + 2)
! Recall that
! cos(m phi), m=1,2,3,4 is stored in the m^{th} element as 0.5
! sin(m phi), m=1,2,3,4 is stored in the (NPHI_GRID-m)^{th} element as -0.5
! cos(0 phi) is stored in the 0^{th} element as 1
!PHI_FAC = 2.0_LONG_REAL * Pi / REAL( NPHI_GRID, KIND = EXTRA_LONG_REAL)
!PHI_FAC = PHI_FAC / ( 4.0_LONG_REAL * Pi / REAL( 2 * HARMONICS(I)%L + 1, KIND = EXTRA_LONG_REAL ) )
PHI_FAC = 0.5_LONG_REAL*REAL(2*HARMONICS(I)%L + 1, KIND=EXTRA_LONG_REAL)/REAL(NPHI_GRID, KIND=LONG_REAL)
INDEX_PLM = HARMONICS(I)%M*LMAX + (HARMONICS(I)%M*(3 - HARMONICS(I)%M))/2 + 1 + (HARMONICS(I)%L - HARMONICS(I)%M)
IF (HARMONICS(I)%SINCOS .EQ. COSINE_HARMONIC) THEN
SPEC(I) = PHI_FAC*SUM(REAL_SPACE(1:NTHETA_GRID, HARMONICS(I)%M)*LEGENDRE_INV(1:NTHETA_GRID, INDEX_PLM))
ELSE
SPEC(I) = -PHI_FAC*SUM(REAL_SPACE(1:NTHETA_GRID, NPHI_GRID - HARMONICS(I)%M)*LEGENDRE_INV(1:NTHETA_GRID, INDEX_PLM))
END IF
END DO
RETURN
END SUBROUTINE REAL_2_SPEC
SUBROUTINE WRITE_U_GMT(GMT_THETA, GMT_PHI, EVEC_TOR, EVEC_POL, HARMONICS, LMAX, SCALE_FACTOR)
!-----------------------------------------------------------------------------
! Writes the flow to a file that GMT can read. Expects u to describe a flow in units of km/yr
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: GMT_THETA, GMT_PHI, LMAX
REAL(KIND=EXTRA_LONG_REAL) :: EVEC_TOR(1:), EVEC_POL(1:)
REAL(KIND=LONG_REAL) :: SCALE_FACTOR
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: COSTHETA_GRID(:), ALF(:, :), DALF(:, :), ONE_DIV_SIN_THETA(:), U_H(:, :, :)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: TEMP_THETA_TRANSFORM_ALF(:, :), TEMP_THETA_TRANSFORM_DALF(:, :)
REAL(KIND=EXTRA_LONG_REAL) :: PHI, ANGLE_VEC, MOD_VEC, PHI_DEP, DERV_PHI_DEP
INTEGER :: I_THETA, I_PHI, I_HARMONIC, INDEX
! setup grids
ALLOCATE (COSTHETA_GRID(1:GMT_THETA))
DO I_THETA = 1, GMT_THETA
COSTHETA_GRID(I_THETA) = COS(I_THETA/REAL(GMT_THETA + 1, KIND=EXTRA_LONG_REAL)*Pi)
END DO
ALLOCATE (TEMP_THETA_TRANSFORM_ALF(1:GMT_THETA, (LMAX + 1)*(LMAX + 2)/2), &
TEMP_THETA_TRANSFORM_DALF(1:GMT_THETA, (LMAX + 1)*(LMAX + 2)/2), &
ALF(1:GMT_THETA, (LMAX + 1)*(LMAX + 2)/2), &
DALF(1:GMT_THETA, (LMAX + 1)*(LMAX + 2)/2), &
ONE_DIV_SIN_THETA(1:GMT_THETA), U_H(1:GMT_THETA, 1:GMT_PHI, 2))
CALL GET_LEGENDRE_FUNCTIONS(REAL(COSTHETA_GRID, KIND=EXTRA_LONG_REAL), &
LMAX, &
LMAX, &
TEMP_THETA_TRANSFORM_ALF, &
TEMP_THETA_TRANSFORM_DALF)
ALF = REAL(TEMP_THETA_TRANSFORM_ALF, KIND=EXTRA_LONG_REAL)
DALF = REAL(TEMP_THETA_TRANSFORM_DALF, KIND=EXTRA_LONG_REAL)
ONE_DIV_SIN_THETA(:) = 1.0_LONG_REAL/SQRT(1.0_LONG_REAL - COSTHETA_GRID(:)**2)
U_H(:, :, :) = 0.0_LONG_REAL
DO I_HARMONIC = 1, SIZE(EVEC_TOR)
INDEX = HARMONICS(I_HARMONIC)%M*LMAX + &
(HARMONICS(I_HARMONIC)%M*(3 - HARMONICS(I_HARMONIC)%M))/2 + &
1 + (HARMONICS(I_HARMONIC)%L - HARMONICS(I_HARMONIC)%M)
DO I_THETA = 1, GMT_THETA
DO I_PHI = 1, GMT_PHI
PHI = (I_PHI - 1)*2.0_LONG_REAL*Pi/REAL(GMT_PHI, KIND=LONG_REAL)
IF (HARMONICS(I_HARMONIC)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = HARMONICS(I_HARMONIC)%M*COS(HARMONICS(I_HARMONIC)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = -HARMONICS(I_HARMONIC)%M*SIN(HARMONICS(I_HARMONIC)%M*PHI)
END IF
! Toroidal flow
U_H(I_THETA, I_PHI, 1) = U_H(I_THETA, I_PHI, 1) + &
EVEC_TOR(I_HARMONIC)*DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
U_H(I_THETA, I_PHI, 2) = U_H(I_THETA, I_PHI, 2) - &
EVEC_TOR(I_HARMONIC)*PHI_DEP*DALF(I_THETA, INDEX)
! Poloidal flow
U_H(I_THETA, I_PHI, 1) = U_H(I_THETA, I_PHI, 1) + &
EVEC_POL(I_HARMONIC)*PHI_DEP*DALF(I_THETA, INDEX)
U_H(I_THETA, I_PHI, 2) = U_H(I_THETA, I_PHI, 2) + &
EVEC_POL(I_HARMONIC)*DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
!IF( I_HARMONIC .eq. 1) PRINT*, EVEC( I_HARMONIC) , PHI_DEP , DALF(I_THETA, INDEX),DERV_PHI_DEP , ALF(I_THETA, INDEX) ,ONE_DIV_SIN_THETA(I_THETA)
END DO
END DO
END DO
!PRINT*, U_H
!STOP
OPEN (15, FILE='FLOW.DAT', STATUS='REPLACE', FORM='FORMATTED')
DO I_THETA = 1, GMT_THETA
DO I_PHI = 1, GMT_PHI
PHI = (I_PHI - 1)*2.0_LONG_REAL*Pi/REAL(GMT_PHI, KIND=LONG_REAL)
ANGLE_VEC = ATAN(-U_H(I_THETA, I_PHI, 2)/U_H(I_THETA, I_PHI, 1))*180.0d0/PI
! correction as atan has principal angle -90 to +90 degrees.
if (U_H(I_THETA, I_PHI, 1) .gt. 0.0d0) then
if (U_H(I_THETA, I_PHI, 2) .lt. 0.0d0) then
ANGLE_VEC = ANGLE_VEC - 180.0d0
else
ANGLE_VEC = ANGLE_VEC + 180.0d0
end if
end if
MOD_VEC = SQRT(U_H(I_THETA, I_PHI, 1)**2 + U_H(I_THETA, I_PHI, 2)**2)
WRITE (15, '(2F8.2,2F15.5)'), PHI*180.0/Pi, 90.0d0 - ACOS(COSTHETA_GRID(I_THETA))*180.0/Pi, ANGLE_VEC, MOD_VEC*SCALE_FACTOR
!WRITE(15,*), PHI*180.0/Pi ,90.0d0-ACOS(COSTHETA_GRID(I_THETA))*180.0/Pi, ANGLE_VEC
!PRINT*, U_H(I_THETA, I_PHI,1:2)
END DO
END DO
CLOSE (15)
RETURN
END SUBROUTINE WRITE_U_GMT
SUBROUTINE WRITE_U_CENTRED(GMT_THETA, GMT_PHI, EVEC_TOR, EVEC_POL, HARMONICS, LMAX)
!-----------------------------------------------------------------------------
! Writes the flow to a grid centred on 0 longitude
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: GMT_THETA, GMT_PHI, LMAX
REAL(KIND=EXTRA_LONG_REAL) :: EVEC_TOR(1:), EVEC_POL(1:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: COSTHETA_GRID(:), ALF(:, :), DALF(:, :), ONE_DIV_SIN_THETA(:), U_H(:, :, :)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: TEMP_THETA_TRANSFORM_ALF(:, :), TEMP_THETA_TRANSFORM_DALF(:, :)
REAL(KIND=EXTRA_LONG_REAL) :: PHI, ANGLE_VEC, MOD_VEC, PHI_DEP, DERV_PHI_DEP
INTEGER :: I_THETA, I_PHI, I_HARMONIC, INDEX
! setup grids
ALLOCATE (COSTHETA_GRID(1:GMT_THETA))
DO I_THETA = 1, GMT_THETA
COSTHETA_GRID(I_THETA) = COS(I_THETA/REAL(GMT_THETA + 1, KIND=EXTRA_LONG_REAL)*Pi)
END DO
ALLOCATE (TEMP_THETA_TRANSFORM_ALF(1:GMT_THETA, (LMAX + 1)*(LMAX + 2)/2), &
TEMP_THETA_TRANSFORM_DALF(1:GMT_THETA, (LMAX + 1)*(LMAX + 2)/2), &
ALF(1:GMT_THETA, (LMAX + 1)*(LMAX + 2)/2), &
DALF(1:GMT_THETA, (LMAX + 1)*(LMAX + 2)/2), &
ONE_DIV_SIN_THETA(1:GMT_THETA), U_H(1:GMT_THETA, 1:GMT_PHI, 2))
CALL GET_LEGENDRE_FUNCTIONS(REAL(COSTHETA_GRID, KIND=EXTRA_LONG_REAL), &
LMAX, &
LMAX, &
TEMP_THETA_TRANSFORM_ALF, &
TEMP_THETA_TRANSFORM_DALF)
ALF = REAL(TEMP_THETA_TRANSFORM_ALF, KIND=EXTRA_LONG_REAL)
DALF = REAL(TEMP_THETA_TRANSFORM_DALF, KIND=EXTRA_LONG_REAL)
ONE_DIV_SIN_THETA(:) = 1.0_LONG_REAL/SQRT(1.0_LONG_REAL - COSTHETA_GRID(:)**2)
U_H(:, :, :) = 0.0_LONG_REAL
DO I_HARMONIC = 1, SIZE(EVEC_TOR)
INDEX = HARMONICS(I_HARMONIC)%M*LMAX + &
(HARMONICS(I_HARMONIC)%M*(3 - HARMONICS(I_HARMONIC)%M))/2 + &
1 + (HARMONICS(I_HARMONIC)%L - HARMONICS(I_HARMONIC)%M)
DO I_THETA = 1, GMT_THETA
DO I_PHI = 1, GMT_PHI
! splits up into equal segments away from the end points.
PHI = -Pi + Pi/REAL(GMT_PHI, KIND=EXTRA_LONG_REAL) + 2.0*Pi/REAL(GMT_PHI, KIND=EXTRA_LONG_REAL)*(I_PHI - 1)
IF (HARMONICS(I_HARMONIC)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = HARMONICS(I_HARMONIC)%M*COS(HARMONICS(I_HARMONIC)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = -HARMONICS(I_HARMONIC)%M*SIN(HARMONICS(I_HARMONIC)%M*PHI)
END IF
! Toroidal flow
U_H(I_THETA, I_PHI, 1) = U_H(I_THETA, I_PHI, 1) + &
EVEC_TOR(I_HARMONIC)*DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
U_H(I_THETA, I_PHI, 2) = U_H(I_THETA, I_PHI, 2) - &
EVEC_TOR(I_HARMONIC)*PHI_DEP*DALF(I_THETA, INDEX)
! Poloidal flow
U_H(I_THETA, I_PHI, 1) = U_H(I_THETA, I_PHI, 1) + &
EVEC_POL(I_HARMONIC)*PHI_DEP*DALF(I_THETA, INDEX)
U_H(I_THETA, I_PHI, 2) = U_H(I_THETA, I_PHI, 2) + &
EVEC_POL(I_HARMONIC)*DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
!IF( I_HARMONIC .eq. 1) PRINT*, EVEC( I_HARMONIC) , PHI_DEP , DALF(I_THETA, INDEX),DERV_PHI_DEP , ALF(I_THETA, INDEX) ,ONE_DIV_SIN_THETA(I_THETA)
END DO
END DO
END DO
!PRINT*, U_H
!STOP
OPEN (15, FILE='FLOW_VECTORS_CENTRED.DAT', STATUS='REPLACE', FORM='FORMATTED')
DO I_THETA = GMT_THETA, 1, -1
DO I_PHI = 1, GMT_PHI
PHI = -Pi + Pi/REAL(GMT_PHI, KIND=EXTRA_LONG_REAL) + 2.0*Pi/REAL(GMT_PHI, KIND=EXTRA_LONG_REAL)*(I_PHI - 1)
WRITE (15, '(2F8.2,2F15.5)'), PHI*180.0/Pi, 90.0d0 - ACOS(COSTHETA_GRID(I_THETA))*180.0/Pi, U_H(I_THETA, I_PHI, 1:2)
END DO
END DO
CLOSE (15)
RETURN
END SUBROUTINE WRITE_U_CENTRED
SUBROUTINE WRITE_U_RANDOM(EVEC_TOR, EVEC_POL, HARMONICS, LMAX)
!-----------------------------------------------------------------------------
! Writes the flow to a quasi-uniformly sampled spherical grid
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: LMAX
REAL(KIND=EXTRA_LONG_REAL) :: EVEC_TOR(1:), EVEC_POL(1:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: COSTHETA_GRID(:), ALF(:, :), DALF(:, :), U_H(:)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: TEMP_THETA_TRANSFORM_ALF(:, :), TEMP_THETA_TRANSFORM_DALF(:, :)
REAL(KIND=EXTRA_LONG_REAL) :: PHI, PHI_DEP, DERV_PHI_DEP, ONE_DIV_SIN_THETA, RANDOM_NUMBERS(1:2), THETA
INTEGER :: I_THETA, I_PHI, I_HARMONIC, INDEX, i, I_LOC
INTEGER, ALLOCATABLE :: SEED(:)
! Generate LAT/LONG grid
CALL RANDOM_SEED(SIZE=i)
ALLOCATE (SEED(1:i))
SEED(:) = 1
CALL RANDOM_SEED(PUT=SEED)
ALLOCATE (COSTHETA_GRID(1))
OPEN (15, FILE='FLOW_VECTORS_RANDOM.DAT', STATUS='REPLACE', FORM='FORMATTED')
ALLOCATE (TEMP_THETA_TRANSFORM_ALF(1, (LMAX + 1)*(LMAX + 2)/2), &
TEMP_THETA_TRANSFORM_DALF(1, (LMAX + 1)*(LMAX + 2)/2), &
ALF(1, (LMAX + 1)*(LMAX + 2)/2), &
DALF(1, (LMAX + 1)*(LMAX + 2)/2), &
U_H(2))
DO I_LOC = 1, NUMBER_RANDOM_START_PTS
CALL RANDOM_NUMBER(RANDOM_NUMBERS(1:2))
!PRINT*, RANDOM_NUMBERS
PHI = RANDOM_NUMBERS(1)*2.0_8*Pi
THETA = ASIN(SQRT(1.0_8 - (2.0_8*RANDOM_NUMBERS(2) - 1.0_8)**2))
IF ((2.0_8*RANDOM_NUMBERS(2) - 1.0_8) < 0.0_8) THETA = Pi - THETA
COSTHETA_GRID(1) = COS(THETA)
!PRINT*, THETA, PHI
CALL GET_LEGENDRE_FUNCTIONS(REAL(COSTHETA_GRID, KIND=EXTRA_LONG_REAL), &
LMAX, &
LMAX, &
TEMP_THETA_TRANSFORM_ALF, &
TEMP_THETA_TRANSFORM_DALF)
ALF = REAL(TEMP_THETA_TRANSFORM_ALF, KIND=EXTRA_LONG_REAL)
DALF = REAL(TEMP_THETA_TRANSFORM_DALF, KIND=EXTRA_LONG_REAL)
ONE_DIV_SIN_THETA = 1.0_LONG_REAL/SQRT(1.0_LONG_REAL - COSTHETA_GRID(1)**2)
U_H(:) = 0.0_LONG_REAL
DO I_HARMONIC = 1, SIZE(EVEC_TOR)
INDEX = HARMONICS(I_HARMONIC)%M*LMAX + &
(HARMONICS(I_HARMONIC)%M*(3 - HARMONICS(I_HARMONIC)%M))/2 + &
1 + (HARMONICS(I_HARMONIC)%L - HARMONICS(I_HARMONIC)%M)
IF (HARMONICS(I_HARMONIC)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = HARMONICS(I_HARMONIC)%M*COS(HARMONICS(I_HARMONIC)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = -HARMONICS(I_HARMONIC)%M*SIN(HARMONICS(I_HARMONIC)%M*PHI)
END IF
! Toroidal flow
U_H(1) = U_H(1) + EVEC_TOR(I_HARMONIC)*DERV_PHI_DEP*ALF(1, INDEX)*ONE_DIV_SIN_THETA
U_H(2) = U_H(2) - EVEC_TOR(I_HARMONIC)*PHI_DEP*DALF(1, INDEX)
! Poloidal flow
U_H(1) = U_H(1) + EVEC_POL(I_HARMONIC)*PHI_DEP*DALF(1, INDEX)
U_H(2) = U_H(2) + EVEC_POL(I_HARMONIC)*DERV_PHI_DEP*ALF(1, INDEX)*ONE_DIV_SIN_THETA
!IF( I_HARMONIC .eq. 1) PRINT*, EVEC( I_HARMONIC) , PHI_DEP , DALF(I_THETA, INDEX),DERV_PHI_DEP , ALF(I_THETA, INDEX) ,ONE_DIV_SIN_THETA(I_THETA)
END DO
WRITE (15, '(2F8.2,2F15.5)'), PHI*180.0/Pi, 90.0 - THETA*180.0/Pi, U_H(1:2)
END DO
CLOSE (15)
RETURN
END SUBROUTINE WRITE_U_RANDOM
SUBROUTINE CALC_U_GRID(THETA_GRID_SIZE, PHI_GRID_SIZE, COSTHETA_GRID, PHI_GRID, EVEC_TOR, EVEC_POL, HARMONICS, LMAX, USQ)
!-----------------------------------------------------------------------------
! Computes u^2 on a grid
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: THETA_GRID_SIZE, PHI_GRID_SIZE, LMAX
REAL(KIND=EXTRA_LONG_REAL) :: EVEC_TOR(1:), EVEC_POL(1:), USQ(:, :), PHI_GRID(PHI_GRID_SIZE), COSTHETA_GRID(1:THETA_GRID_SIZE)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: ALF(:, :), DALF(:, :), ONE_DIV_SIN_THETA(:), U_H(:, :, :)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: TEMP_THETA_TRANSFORM_ALF(:, :), TEMP_THETA_TRANSFORM_DALF(:, :)
REAL(KIND=EXTRA_LONG_REAL) :: PHI, ANGLE_VEC, MOD_VEC, PHI_DEP, DERV_PHI_DEP
INTEGER :: I_THETA, I_PHI, I_HARMONIC, INDEX
!PRINT*, PHI_GRID_SIZE, THETA_GRID_SIZE
! setup grids
ALLOCATE (TEMP_THETA_TRANSFORM_ALF(1:THETA_GRID_SIZE, (LMAX + 1)*(LMAX + 2)/2), &
TEMP_THETA_TRANSFORM_DALF(1:THETA_GRID_SIZE, (LMAX + 1)*(LMAX + 2)/2), &
ALF(1:THETA_GRID_SIZE, (LMAX + 1)*(LMAX + 2)/2), &
DALF(1:THETA_GRID_SIZE, (LMAX + 1)*(LMAX + 2)/2), &
ONE_DIV_SIN_THETA(1:THETA_GRID_SIZE), U_H(1:THETA_GRID_SIZE, 1:PHI_GRID_SIZE, 2))
CALL GET_LEGENDRE_FUNCTIONS(REAL(COSTHETA_GRID, KIND=EXTRA_LONG_REAL), &
LMAX, &
LMAX, &
TEMP_THETA_TRANSFORM_ALF, &
TEMP_THETA_TRANSFORM_DALF)
ALF = REAL(TEMP_THETA_TRANSFORM_ALF, KIND=EXTRA_LONG_REAL)
DALF = REAL(TEMP_THETA_TRANSFORM_DALF, KIND=EXTRA_LONG_REAL)
ONE_DIV_SIN_THETA(:) = 1.0_LONG_REAL/SQRT(1.0_LONG_REAL - COSTHETA_GRID(:)**2)
U_H(:, :, :) = 0.0_LONG_REAL
DO I_HARMONIC = 1, SIZE(EVEC_TOR)
INDEX = HARMONICS(I_HARMONIC)%M*LMAX + &
(HARMONICS(I_HARMONIC)%M*(3 - HARMONICS(I_HARMONIC)%M))/2 + &
1 + (HARMONICS(I_HARMONIC)%L - HARMONICS(I_HARMONIC)%M)
DO I_THETA = 1, THETA_GRID_SIZE
DO I_PHI = 1, PHI_GRID_SIZE
PHI = (I_PHI - 1)*2.0_LONG_REAL*Pi/REAL(PHI_GRID_SIZE, KIND=EXTRA_LONG_REAL)
IF (HARMONICS(I_HARMONIC)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = HARMONICS(I_HARMONIC)%M*COS(HARMONICS(I_HARMONIC)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = -HARMONICS(I_HARMONIC)%M*SIN(HARMONICS(I_HARMONIC)%M*PHI)
END IF
! Toroidal flow
U_H(I_THETA, I_PHI, 1) = U_H(I_THETA, I_PHI, 1) + &
EVEC_TOR(I_HARMONIC)*DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
U_H(I_THETA, I_PHI, 2) = U_H(I_THETA, I_PHI, 2) - &
EVEC_TOR(I_HARMONIC)*PHI_DEP*DALF(I_THETA, INDEX)
! Poloidal flow
U_H(I_THETA, I_PHI, 1) = U_H(I_THETA, I_PHI, 1) + &
EVEC_POL(I_HARMONIC)*PHI_DEP*DALF(I_THETA, INDEX)
U_H(I_THETA, I_PHI, 2) = U_H(I_THETA, I_PHI, 2) + &
EVEC_POL(I_HARMONIC)*DERV_PHI_DEP*ALF(I_THETA, INDEX)*ONE_DIV_SIN_THETA(I_THETA)
!IF( I_HARMONIC .eq. 1) PRINT*, EVEC( I_HARMONIC) , PHI_DEP , DALF(I_THETA, INDEX),DERV_PHI_DEP , ALF(I_THETA, INDEX) ,ONE_DIV_SIN_THETA(I_THETA)
END DO
END DO
END DO
DO I_THETA = 1, THETA_GRID_SIZE
DO I_PHI = 1, PHI_GRID_SIZE
USQ(I_THETA, I_PHI) = U_H(I_THETA, I_PHI, 1)**2 + U_H(I_THETA, I_PHI, 2)**2
END DO
END DO
RETURN
END SUBROUTINE CALC_U_GRID
SUBROUTINE WRITE_TOR_STREAM_FN(N_THETA, N_PHI, EVEC_TOR, HARMONICS, LMAX)
!-----------------------------------------------------------------------------
! Writes the stream function of the toroidal flow to a grid centred on 0 longitude
!-----------------------------------------------------------------------------
IMPLICIT NONE
INTEGER :: N_THETA, N_PHI, LMAX
REAL(KIND=EXTRA_LONG_REAL) :: EVEC_TOR(1:)
TYPE(HARMONIC_STRUCTURE) :: HARMONICS(1:)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: COSTHETA_GRID(:), ALF(:, :), DALF(:, :), ONE_DIV_SIN_THETA(:), STREAMFN(:, :)
REAL(KIND=EXTRA_LONG_REAL), ALLOCATABLE :: TEMP_THETA_TRANSFORM_ALF(:, :), TEMP_THETA_TRANSFORM_DALF(:, :)
REAL(KIND=EXTRA_LONG_REAL) :: PHI, ANGLE_VEC, MOD_VEC, PHI_DEP, DERV_PHI_DEP
INTEGER :: I_THETA, I_PHI, I_HARMONIC, INDEX
! setup grids
ALLOCATE (COSTHETA_GRID(1:N_THETA))
DO I_THETA = 1, N_THETA
COSTHETA_GRID(I_THETA) = COS(I_THETA/REAL(N_THETA + 1, KIND=EXTRA_LONG_REAL)*Pi)
END DO
ALLOCATE (TEMP_THETA_TRANSFORM_ALF(1:N_THETA, (LMAX + 1)*(LMAX + 2)/2), &
TEMP_THETA_TRANSFORM_DALF(1:N_THETA, (LMAX + 1)*(LMAX + 2)/2), &
ALF(1:N_THETA, (LMAX + 1)*(LMAX + 2)/2), &
DALF(1:N_THETA, (LMAX + 1)*(LMAX + 2)/2), &
ONE_DIV_SIN_THETA(1:N_THETA), STREAMFN(1:N_THETA, 1:N_PHI))
CALL GET_LEGENDRE_FUNCTIONS(REAL(COSTHETA_GRID, KIND=EXTRA_LONG_REAL), &
LMAX, &
LMAX, &
TEMP_THETA_TRANSFORM_ALF, &
TEMP_THETA_TRANSFORM_DALF)
ALF = REAL(TEMP_THETA_TRANSFORM_ALF, KIND=EXTRA_LONG_REAL)
DALF = REAL(TEMP_THETA_TRANSFORM_DALF, KIND=EXTRA_LONG_REAL)
ONE_DIV_SIN_THETA(:) = 1.0_LONG_REAL/SQRT(1.0_LONG_REAL - COSTHETA_GRID(:)**2)
STREAMFN(:, :) = 0.0_LONG_REAL
DO I_HARMONIC = 1, SIZE(EVEC_TOR)
INDEX = HARMONICS(I_HARMONIC)%M*LMAX + &
(HARMONICS(I_HARMONIC)%M*(3 - HARMONICS(I_HARMONIC)%M))/2 + &
1 + (HARMONICS(I_HARMONIC)%L - HARMONICS(I_HARMONIC)%M)
DO I_THETA = 1, N_THETA
DO I_PHI = 1, N_PHI
! splits up into equal segments away from the end points.
PHI = -Pi + Pi/REAL(N_PHI, KIND=EXTRA_LONG_REAL) + 2.0*Pi/REAL(N_PHI, KIND=EXTRA_LONG_REAL)*(I_PHI - 1)
IF (HARMONICS(I_HARMONIC)%SINCOS .EQ. SINE_HARMONIC) THEN
PHI_DEP = SIN(HARMONICS(I_HARMONIC)%M*PHI)
DERV_PHI_DEP = HARMONICS(I_HARMONIC)%M*COS(HARMONICS(I_HARMONIC)%M*PHI)
ELSE
PHI_DEP = COS(HARMONICS(I_HARMONIC)%M*PHI)