-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_regression_model.py
51 lines (38 loc) · 1.41 KB
/
keras_regression_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pandas as pd
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
concrete_data = pd.read_csv('https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/DL0101EN/labs/data/concrete_data.csv')
# Data Checks
concrete_data.head()
print(concrete_data.isnull().sum())
# Split into preictor and target
concrete_data_columns = concrete_data.columns
predictors = concrete_data[concrete_data_columns[concrete_data_columns != 'Strength']] # all columns except Strength
target = concrete_data['Strength'] # Strength column
# Normalise data
predictors_norm = (predictors - predictors.mean()) / predictors.std()
n_cols = predictors_norm.shape[1] # Num of predictors
def regression_model():
# Create
model = Sequential()
model.add(Dense(50, activation='relu', input_shape=(n_cols,)))
model.add(Dense(50, activation='relu'))
model.add(Dense(1))
# Compile
model.compile(optimizer='adam', loss='mean_squared_error')
return model
# Build model
model = regression_model()
# Train and test using fit
history = model.fit(predictors_norm, target, validation_split=0.3, epochs=100, verbose=2)
# Plot the loss vs epoch
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss vs Epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend()
plt.show()