-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_clothing1M.py
276 lines (244 loc) · 7.1 KB
/
train_clothing1M.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import argparse
import random
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torchvision import transforms
from data import Clothing1M
from models.resnet import ResNet18, test_new
from models.preact_resnet import PreActResNet18, test
from models.utils import train, evaluate
import wandb
"""
Code from https://github.com/chenpf1025/RobustnessAccuracy/blob/master/train_clothing1m_ce.py
Run smoketest:
python train_clothing1M.py --random_seed=99 --n_gpu=4 --tag=smoketest \
--smoketest --cuda_num=0
Run full training run on clean training set needed for :
python train_clothing1M.py --random_seed=0 --n_gpu=8 \
--cuda_num=0 --tag=preactresnet_b256 --batch_size=512
"""
def seed_everything(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def parse_args(args=None):
parser = argparse.ArgumentParser(description='PyTorch Clothing1M')
parser.add_argument(
'--seed',
type=int,
default=2021,
)
parser.add_argument(
'--cuda_num',
type=int,
help='number of cuda in the server',
)
parser.add_argument(
'--n_gpu',
type=int,
default=2,
help='number of gpu to use',
)
parser.add_argument(
'--root',
type=str,
default='data/clothing1M/',
help='root of dataset',
)
parser.add_argument(
'--tag',
type=str,
default='',
help='unique tag for logging',
)
parser.add_argument(
'--batch_size',
type=int,
default=128,
help='input batch size for training',
)
parser.add_argument(
'--smoketest',
action='store_true',
default=False,
help='Smoketest for training on less data for fewer epochs',
)
parser.add_argument(
'--use_noisy',
action='store_true',
default=False,
help='Using the noisy dataset for training only.',
)
parser.add_argument(
'--test_batch_size',
type=int,
default=128,
help='input batch size for testing',
)
parser.add_argument(
'--terminate_early',
action='store_true',
default=False,
help='For EL2N early model data valuation, terminate training early at 10 epochs.',
)
parser.add_argument(
'--preact_resnet',
action='store_true',
default=False,
help='Train a preact resnet instead of normal resnet.',
)
args = parser.parse_known_args(args=args)[0]
return args
def main():
# Settin
args = parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cuda_num = args.cuda_num
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# wandb logger
wandb.init(
group="clothing1m",
name=f"clothing1m_{args.tag}",
project="ot-data-selection",
config={
"dataset": "Clothing1M",
}
)
# Datasets
root = args.root
num_classes = 14
kwargs = {'num_workers': 16, 'pin_memory': True} if torch.cuda.is_available() else {}
train_transform = transforms.Compose(
[
transforms.Resize((256)),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.6959, 0.6537, 0.6371), (0.3113, 0.3192, 0.3214)),
]
)
test_transform = transforms.Compose(
[
transforms.Resize((256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.6959, 0.6537, 0.6371), (0.3113, 0.3192, 0.3214)),
]
)
train_dataset = Clothing1M(
root,
mode='train',
transform=train_transform,
use_noisy=args.use_noisy,
smoketest=args.smoketest,
)
val_dataset = Clothing1M(
root,
mode='val',
transform=test_transform,
use_noisy=args.use_noisy,
)
test_dataset = Clothing1M(
root,
mode='test',
transform=test_transform,
use_noisy=args.use_noisy,
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
**kwargs,
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.test_batch_size,
shuffle=False,
**kwargs,
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size,
shuffle=False,
**kwargs,
)
criterion = nn.CrossEntropyLoss()
# Building model
if args.preact_resnet:
net = PreActResNet18(num_classes=num_classes, imagenet=True).to(device)
test(num_classes=num_classes)
else:
net = ResNet18(num_classes=num_classes, imagenet=True).to(device)
test_new(num_classes=num_classes)
net = torch.nn.DataParallel(net, device_ids=list(range(cuda_num, cuda_num + args.n_gpu)))
optimizer = optim.SGD(
net.parameters(),
lr=0.1,
momentum=0.9,
weight_decay=1e-3,
)
cudnn.benchmark = True # Accelerate training by enabling the inbuilt cudnn auto-tuner to find the best algorithm to use for your hardware.
# Training
if args.smoketest:
schedule = [
(0, 5, .1),
(5, 8, .01),
(8, 10, .001),
]
else:
schedule = [
(0, 50, .1),
(50, 75, .01),
(75, 100, .001),
]
step = 0
for start, end, lr in schedule:
# Set learning rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
for epoch in range(start, end):
train(
step,
train_loader,
single=False,
net=net,
optimizer=optimizer,
device=device,
criterion=criterion,
)
step += len(train_loader)
evaluate(
step,
train_loader,
val_loader,
single=False,
net=net,
device=device,
criterion=criterion,
optimizer=optimizer,
)
print("saving model")
if not args.smoketest and (epoch + 1) % 10 == 0:
torch.save(
net.module.state_dict(),
os.path.join(
os.getcwd(),
"checkpoint",
f"clothing1m_clean_train_resnet18_{epoch}_{args.tag}.pth",
)
)
if args.terminate_early and (epoch + 1) > 10:
sys.exit()
if __name__ == '__main__':
main()