-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cifar10.py
197 lines (154 loc) · 4.88 KB
/
train_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import pickle
import wandb
import random
import argparse
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, ConcatDataset
from torch.utils.data.sampler import SubsetRandomSampler
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from logger import Logger
from models.resnet import ResNet18, test_new
from models.utils import train, evaluate
from otdd.pytorch.datasets import SubsetSampler
print(torchvision.__version__)
print(torch.__version__)
def seed_everything(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument(
'--random_seed',
type=int,
default=2021,
)
parser.add_argument(
'--cuda_num',
type=int,
help='number of cuda in the server',
)
args = parser.parse_known_args(args=args)[0]
return args
if __name__ == "__main__":
args = parse_args()
seed_everything(args.random_seed)
cuda_num = args.cuda_num
os.environ["CUDA_VISIBLE_DEVICES"]=str(cuda_num)
print("GPU", os.environ["CUDA_VISIBLE_DEVICES"])
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# wandb logger
wandb.init(
group="tracin_100e",
name="tracin_100e_resnet18",
project="ot-data-selection",
config={
"dataset": "CIFAR10",
}
)
lr = 0.1
batch_size = 128
seed = 0
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform_train)
# trainset = torch.utils.data.Subset(
# trainset, np.random.choice(len(trainset), size=10000, replace=False))
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
net = ResNet18().to(device) # final linear layer 512 -> 10
#net = ResNet18(feat_dim=128, pool=4).to(device) # final linear layer 128 -> 10
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=lr,
momentum=0.9,
weight_decay=5e-4,
)
# schedule = [
# (0, 100, .1),
# (100, 150, .01),
# (150, 200, .001),
# ]
schedule = [
(0, 50, .1),
(50, 75, .01),
(75, 100, .001),
]
# schedule = [
# (0, 30, .1),
# (30, 40, .01),
# (40, 50, .001),
# ]
for start, end, lr in schedule:
# Set learning rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
for epoch in range(start, end):
train(
epoch,
trainloader,
single=False,
net=net,
optimizer=optimizer,
device=device,
criterion=criterion,
) # for knn shap we train on the val set
evaluate(
epoch,
trainloader,
testloader,
single=False,
net=net,
device=device,
criterion=criterion,
optimizer=optimizer,
) # for knn shap we take 10k samples from train as the val set
print("saving model")
torch.save(
net.state_dict(),
os.path.join(
os.getcwd(),
"checkpoint",
f"p2_cifar10_100e_resnet18_new_{epoch}.pth",
)
)
# print("saving model")
# torch.save(
# net.state_dict(),
# os.path.join(
# os.getcwd(),
# "checkpoint",
# f"p2_cifar10_embedder_resnet18_10k_val_dim128_{epoch}.pth",
# )
# )