-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpretrain_fusion.py
68 lines (53 loc) · 2.22 KB
/
pretrain_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# General Imports
import torch
torch.set_float32_matmul_precision('medium')
import multiprocessing
from multiprocessing import freeze_support
import os
from omegaconf import OmegaConf
import datetime
# PL imports
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import Trainer
# Local Imports
from utils.datasets import dataset_selector
from model.fusion import RecursiveNet_pl
if __name__ == '__main__':
# required for Multprocessing on Windows
freeze_support()
# load config file
config = OmegaConf.load("config.yaml")
# get dataset
pl_datamodule = dataset_selector(config)
# get model
fusion_model = RecursiveNet_pl()
# Loggers
from pytorch_lightning import loggers as pl_loggers
tb_logger = pl_loggers.TensorBoardLogger(save_dir=os.path.normpath("logs/"))
from pytorch_lightning import loggers as pl_loggers
tb_logger = pl_loggers.TensorBoardLogger(save_dir=os.path.normpath("logs/"))
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(os.path.normpath('logs/tmp'))
from pytorch_lightning.loggers import WandbLogger
wandb_project = "2023_SRGAN" # "testing"
wandb_logger = WandbLogger(project=wandb_project,entity="simon-donike")
# perform some training
dir_save_checkpoints = os.path.join(tb_logger.save_dir,wandb_project,
datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
print("Experiment Path:",dir_save_checkpoints)
checkpoint_callback = ModelCheckpoint(dirpath=dir_save_checkpoints,
monitor='val/L2',
mode='min',
save_last=True,
save_top_k=2)
# define trainer
trainer = Trainer(accelerator='cuda',
devices=[0],
check_val_every_n_epoch=1,
val_check_interval=0.5,
limit_val_batches=5,
max_epochs=100,
logger=[wandb_logger],
callbacks=[ checkpoint_callback])
# fit model
trainer.fit(fusion_model, datamodule=pl_datamodule)