-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathutils.py
215 lines (187 loc) · 8.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
from torchvision.datasets.utils import download_url
import torch
import torchvision.models as torchvision_models
import timm
from models import mocov3_vit
import math
import warnings
# code from SiT repository
pretrained_models = {'last.pt'}
def download_model(model_name):
"""
Downloads a pre-trained SiT model from the web.
"""
assert model_name in pretrained_models
local_path = f'pretrained_models/{model_name}'
if not os.path.isfile(local_path):
os.makedirs('pretrained_models', exist_ok=True)
web_path = f'https://www.dl.dropboxusercontent.com/scl/fi/cxedbs4da5ugjq5wg3zrg/last.pt?rlkey=8otgrdkno0nd89po3dpwngwcc&st=apcc645o&dl=0'
download_url(web_path, 'pretrained_models', filename=model_name)
model = torch.load(local_path, map_location=lambda storage, loc: storage)
return model
def fix_mocov3_state_dict(state_dict):
for k in list(state_dict.keys()):
# retain only base_encoder up to before the embedding layer
if k.startswith('module.base_encoder'):
# fix naming bug in checkpoint
new_k = k[len("module.base_encoder."):]
if "blocks.13.norm13" in new_k:
new_k = new_k.replace("norm13", "norm1")
if "blocks.13.mlp.fc13" in k:
new_k = new_k.replace("fc13", "fc1")
if "blocks.14.norm14" in k:
new_k = new_k.replace("norm14", "norm2")
if "blocks.14.mlp.fc14" in k:
new_k = new_k.replace("fc14", "fc2")
# remove prefix
if 'head' not in new_k and new_k.split('.')[0] != 'fc':
state_dict[new_k] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
if 'pos_embed' in state_dict.keys():
state_dict['pos_embed'] = timm.layers.pos_embed.resample_abs_pos_embed(
state_dict['pos_embed'], [16, 16],
)
return state_dict
@torch.no_grad()
def load_encoders(enc_type, device, resolution=256):
assert (resolution == 256) or (resolution == 512)
enc_names = enc_type.split(',')
encoders, architectures, encoder_types = [], [], []
for enc_name in enc_names:
encoder_type, architecture, model_config = enc_name.split('-')
# Currently, we only support 512x512 experiments with DINOv2 encoders.
if resolution == 512:
if encoder_type != 'dinov2':
raise NotImplementedError(
"Currently, we only support 512x512 experiments with DINOv2 encoders."
)
architectures.append(architecture)
encoder_types.append(encoder_type)
if encoder_type == 'mocov3':
if architecture == 'vit':
if model_config == 's':
encoder = mocov3_vit.vit_small()
elif model_config == 'b':
encoder = mocov3_vit.vit_base()
elif model_config == 'l':
encoder = mocov3_vit.vit_large()
ckpt = torch.load(f'./ckpts/mocov3_vit{model_config}.pth')
state_dict = fix_mocov3_state_dict(ckpt['state_dict'])
del encoder.head
encoder.load_state_dict(state_dict, strict=True)
encoder.head = torch.nn.Identity()
elif architecture == 'resnet':
raise NotImplementedError()
encoder = encoder.to(device)
encoder.eval()
elif 'dinov2' in encoder_type:
import timm
if 'reg' in encoder_type:
encoder = torch.hub.load('facebookresearch/dinov2', f'dinov2_vit{model_config}14_reg')
else:
encoder = torch.hub.load('facebookresearch/dinov2', f'dinov2_vit{model_config}14')
del encoder.head
patch_resolution = 16 * (resolution // 256)
encoder.pos_embed.data = timm.layers.pos_embed.resample_abs_pos_embed(
encoder.pos_embed.data, [patch_resolution, patch_resolution],
)
encoder.head = torch.nn.Identity()
encoder = encoder.to(device)
encoder.eval()
elif 'dinov1' == encoder_type:
import timm
from models import dinov1
encoder = dinov1.vit_base()
ckpt = torch.load(f'./ckpts/dinov1_vit{model_config}.pth')
if 'pos_embed' in ckpt.keys():
ckpt['pos_embed'] = timm.layers.pos_embed.resample_abs_pos_embed(
ckpt['pos_embed'], [16, 16],
)
del encoder.head
encoder.head = torch.nn.Identity()
encoder.load_state_dict(ckpt, strict=True)
encoder = encoder.to(device)
encoder.forward_features = encoder.forward
encoder.eval()
elif encoder_type == 'clip':
import clip
from models.clip_vit import UpdatedVisionTransformer
encoder_ = clip.load(f"ViT-{model_config}/14", device='cpu')[0].visual
encoder = UpdatedVisionTransformer(encoder_).to(device)
#.to(device)
encoder.embed_dim = encoder.model.transformer.width
encoder.forward_features = encoder.forward
encoder.eval()
elif encoder_type == 'mae':
from models.mae_vit import vit_large_patch16
import timm
kwargs = dict(img_size=256)
encoder = vit_large_patch16(**kwargs).to(device)
with open(f"ckpts/mae_vit{model_config}.pth", "rb") as f:
state_dict = torch.load(f)
if 'pos_embed' in state_dict["model"].keys():
state_dict["model"]['pos_embed'] = timm.layers.pos_embed.resample_abs_pos_embed(
state_dict["model"]['pos_embed'], [16, 16],
)
encoder.load_state_dict(state_dict["model"])
encoder.pos_embed.data = timm.layers.pos_embed.resample_abs_pos_embed(
encoder.pos_embed.data, [16, 16],
)
elif encoder_type == 'jepa':
from models.jepa import vit_huge
kwargs = dict(img_size=[224, 224], patch_size=14)
encoder = vit_huge(**kwargs).to(device)
with open(f"ckpts/ijepa_vit{model_config}.pth", "rb") as f:
state_dict = torch.load(f, map_location=device)
new_state_dict = dict()
for key, value in state_dict['encoder'].items():
new_state_dict[key[7:]] = value
encoder.load_state_dict(new_state_dict)
encoder.forward_features = encoder.forward
encoders.append(encoder)
return encoders, encoder_types, architectures
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def load_legacy_checkpoints(state_dict, encoder_depth):
new_state_dict = dict()
for key, value in state_dict.items():
if 'decoder_blocks' in key:
parts =key.split('.')
new_idx = int(parts[1]) + encoder_depth
parts[0] = 'blocks'
parts[1] = str(new_idx)
new_key = '.'.join(parts)
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
return new_state_dict