Skip to content

Unsupported model architecture for VanillaGradients #182

@khaledbouabdallah

Description

@khaledbouabdallah

I'm trying to use VanillaGradients for a single image, but I'm getting this warning

UserWarning: Unsupported model architecture for VanillaGradients. The last two layers of the model should be: a layer which computes class scores with no activation, followed by an activation layer.

VanillaGradients call :

img = tf.keras.preprocessing.image.load_img(image_path,target_size=IMG_SHAPE)
img = tf.keras.preprocessing.image.img_to_array(img)
img = np.array(img) / 255

data = ([img], None)

explainer = VanillaGradients()
grid = explainer.explain(data,model,0)

Model Declaration

model = Sequential()
model.add(Conv2D(32 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu' , input_shape = (150,150,3)))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Conv2D(64 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))
model.add(Dropout(0.1))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Conv2D(64 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Conv2D(128 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Conv2D(256 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Flatten())
model.add(Dense(units = 128 , activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(units = 1 , activation = 'sigmoid'))

Notes

  • GRAND CAM and occlusion are working as expected but all gradient-based methods results in the same warning
  • I'm working on binary classification

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions