-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuture_real_data.R
280 lines (215 loc) · 8.57 KB
/
future_real_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
##
command_line_args = commandArgs(trailingOnly=TRUE)
#### command line arguments
if (length(command_line_args)==0) {
stop("At least one argument must be supplied (input file).n", call.=FALSE)
}
scenario_df <- read.csv(file="scenario_df.csv", stringsAsFactors = FALSE)
#print(scenario_df)
scenario_arg <- ifelse(is.na(command_line_args[1]),"one_winner",command_line_args[1])
# number of cores to use internally for parallelism
parallel_arg <- ifelse(is.na(command_line_args[2]),0,command_line_args[2])
# need a symbolic link in the tactic directory
system("ln -s ~/rds/hpc-work/ ~/tactic/results")
### Pull out old data into standard survival data set
## This might be saved as a data from in future versions of code
## But I didn't do this D'Oh, so grab it from the Rstanarm object
task_id_string <- Sys.getenv("SLURM_ARRAY_TASK_ID")
task_id <- as.numeric(task_id_string)
model_index <- task_id
filename <- paste0("results/",scenario_arg,"/fits_image_", model_index,".rds")
fit <- readRDS(file=filename)
library(tidyr)
library(dplyr)
df <- fit$optimistic$data
df$id <- 0
id <- 0
for( row in 1:nrow(df)){
if(df[row,"time"]==1){id <- id+1}
df[row,"id"] <- id
}
#pull out the last row for each id
df <- df %>% group_by(id) %>% slice(n()) %>% ungroup %>% as.data.frame()
## Get the parameters needed to generate more data
## Again coudl be saved, but easier to just repeat the same code from the interim data/analysis
## BAD CODE
#scenario_arg <- "null"
scenario_df <- read.csv(file="scenario_df.csv", stringsAsFactors = FALSE)
inputs <- subset(scenario_df,scenario==scenario_arg) %>% as.list()
inputs$hr <- with(inputs, c(hr1,hr2))
# HARD CODING
inputs$n_per_arm <- 469-125 # The max sample size minus the data already generated
## Generate future data for 2/3 arms at each of the 2 future analysis points.
source("sim_failure.R")
index <- which(names(inputs) %in% names(formals(sim_failure)))
df_new <- do.call(sim_failure, inputs[index]) #ignore the warning
index <- which(names(inputs) %in% names(formals(add_censor)))
df_new <- do.call(add_censor, c(list(df_new), inputs[index]))
rm(index)
## Produce coxph analysis at each 4 combinations
# blocks of treatments, size 344, then site is 1:10 replicated lots of times.
# work out which rows are in teh second interim, but not the final
#HARD COding
n2 <- 229-125
# c( 1:n2, 344+1:n2, 2*344+1:n2)
index2 <-rep(1:n2, 3)+rep(0:2*344, rep(n2,3))
df_interim2 <- rbind(
df[,c("rx","site","time","status")],
df_new[index2, c("rx","site","time","status")]
)
## cox fit, and triangular test version.
library(survival)
cox_interim2 <- coxph(Surv(time, status)~rx+ frailty.gaussian(site), data=df_interim2) %>% summary
df_final <- rbind(
df[,c("rx","site","time","status")],
df_new[, c("rx","site","time","status")]
)
cox_final <- coxph(Surv(time, status)~rx+ frailty.gaussian(site), data=df_final) %>% summary
filename <- paste0("results/null/coxfit_", model_index,".rds")
cox_interim1 <- readRDS(file=filename)
## Run Bayes model at each 4 combinations
# INterim 2 bayes analysis and set up for baye/parallel processing.
fail_times <- df_interim2 %>% filter(status==1) %>% select(time) %>% unique() %>% unlist
df_long_interim2 <- survSplit(Surv(time, status)~rx+site, df_interim2, cut=fail_times)
library(rstanarm)
#library(brms)
number_chains=2
### CHECK FOR SLURM ARRAY ETC
library(doParallel)
library(foreach)
if( 1 < parallel_arg){
ncores <- min(parallel::detectCores(), parallel_arg)
`%my_do%` <- `%dopar%`
} else{
ncores <- 1
`%my_do%` <- `%do%`
}
cl<-makeCluster(ncores)
registerDoParallel(cl)
clusterEvalQ(cl, .libPaths("library"))
getDoParWorkers()
#library(bayesplot)
source("priors.R")
prior_list <- list("vague"=vague, "optimistic"=optimistic, "pessimistic"=pessimistic)
effects <- c("rxE1","rxE2")
system.time(
fits_interim2 <- foreach(i = 1:length(prior_list),
.inorder = TRUE,
.packages=c("rstanarm","survival"),
.export=c("df_long_interim2")
) %my_do% {
stan_glmer(status~-1+strata(time)+rx+(1|site), data=df_long_interim2, family=poisson,
chains=number_chains, iter=3000/number_chains,QR=FALSE, thin=2,
prior =prior_list[[i]])
}
)
names(fits_interim2) <- names(prior_list)
# Final bayes analaysis
fail_times <- df_final %>% filter(status==1) %>% select(time) %>% unique() %>% unlist
df_long_final<- survSplit(Surv(time, status)~rx+site, df_final, cut=fail_times)
system.time(
fits_final <- foreach(i = 1:length(prior_list),
.inorder = TRUE,
.packages=c("rstanarm","survival"),
.export=c("df_long_final")
) %my_do% {
stan_glmer(status~-1+strata(time)+rx+(1|site), data=df_long_final, family=poisson,
chains=number_chains, iter=3000/number_chains,QR=FALSE, thin=2,
prior =prior_list[[i]])
}
)
names(fits_final) <- names(prior_list)
## Put the estimates, SE, and hypothesis test into a data.frame.
# frequentest unadjusted and triangular test version, and
#source("group_sequential_design.R")
# but don't need to do this repeatedly. The set of boundaries are saved
print("Line 140")
boundary_list <- readRDS("boundary_list.rds")
#1-sided p-values, negative log hr is good.
inference <- function(fit, interim,arm, boundary_list){
# only look at one arm at a time
estimates <- coef(fit)[arm,]
coef <- estimates["coef"]
se <- estimates["se(coef)"]
z <- -coef/se #negative log hr is good.
pvalue <- 1-pnorm(z)
decisions <- sapply(boundary_list, function(x,z,interim){
if(z< x[interim,1]){output <- "accept"}
if(x[interim,1]<= z & z <= x[interim,2]){output <- "continue"}
if( x[interim,2]< z){ output <- "reject"}
if( interim==3 & output=="continue"){output <- "accept"}
output
},z=z, interim=interim)
data.frame(arm=arm,interim=interim, "coef"=coef, "se"=se, z=z, pvalue=pvalue,
pocock=decisions["pocock"],
triangular=decisions["triangular"],
obf=decisions["obf"], stringsAsFactors = FALSE
)
}
inference_df <- expand.grid(arm=c("rxE1","rxE2"), interim=1:3, stringsAsFactors = FALSE)
inference_df %<>% mutate( fit=c("cox_interim1","cox_interim2","cox_final")[interim])
print("Line 169")
nrow <- nrow(inference_df)
results_df <- data.frame(arm=character(nrow),
interim=integer(nrow),
coef=numeric(nrow),
se=numeric(nrow),
z=numeric(nrow),
pvalue=numeric(nrow),
pocock=character(nrow),
triangular=character(nrow),
obf=character(nrow), stringsAsFactors = FALSE
)
for( row in 1:nrow(inference_df)){
x <- as.list(inference_df[row,])
results_df[row,] <- do.call("inference", list(fit=as.name(x$fit),interim=x$interim, arm=as.character(x$arm),
boundary_list=boundary_list) )
}
print("Line 188")
# bayesian p-values.
bayes_p <- function(fit){
posterior <- as.array(fit)
effects=c("rxE1","rxE2")
apply(posterior, 3, FUN=function(x){mean(x<0)})[effects]
}
bayes_int1 <- lapply(fit, bayes_p)
bayes_int2 <- lapply(fits_interim2, bayes_p)
bayes_final <- lapply(fits_final, bayes_p)
bayes_results <- cbind( bind_rows(c(bayes_int1,bayes_int2, bayes_final)),
prior=rep(names(bayes_final),3),
interim=rep(1:3,rep(3,3))
)
print("Line 205")
bayes_results %<>% gather(key = "arm", value = "prob", -prior, -interim ) %>%
spread(key=prior, value=prob)
results_df %>% merge(bayes_results, by=c("interim","arm"))
#get bayes estimates and se
bayes_est <- function(fit){
data.frame(arm=effects,
bayes_coef=fixef(fit$vague)[effects],
bayes_se=se(fit$vague)[effects],
stringsAsFactors = FALSE
)
}
print("Line 221")
bayes_est_df <- lapply(list(interim1=fit, interim2= fits_interim2, final=fits_final), bayes_est) %>%
Reduce(rbind,.)
bayes_est_df$interim <- rep(1:3,rep(2,3))
output <- results_df %>% merge(bayes_results, by=c("interim","arm")) %>%
merge(bayes_est_df, by=c("interim","arm"))
output$model_index <- model_index
output$scenario <- scenario_arg
# coverage
log_hr <- filter(scenario_df, scenario==scenario_arg) %>%
select(hr1,hr2) %>% unlist %>% log
print("Line 237")
output %<>% mutate(
freq_coverage=coef - 1.96 * se < log_hr & log_hr < coef + 1.96 * se,
bayes_coverage=bayes_coef - 1.96 * bayes_se < log_hr & log_hr < bayes_coef + 1.96 * bayes_se,
freq_bias = coef-log_hr,
bayes_bias= bayes_coef - log_hr
)
filename=paste0("results/",scenario_arg,"/inference_results_",model_index,".rds")
saveRDS(output, file=filename)
print(scenario_arg)
stopCluster(cl)