-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
54 lines (38 loc) · 1.42 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# mreg
<!-- badges: start -->
[](https://github.com/shug0131/mreg/actions)
[](https://app.codecov.io/gh/shug0131/mreg?branch=master)
<!-- badges: end -->
The goal of mreg is to implements the techniques of exact likelihood when the discrete outcome can be missing in a regression model. It is the accompanying software to the paper Bond S, Farewell V, 2006, Exact Likelihood Estimation for a
Negative Binomial Regression Model with Missing Outcomes, Biometrics
## Installation
You can install the released version of mreg from [CRAN](https://CRAN.R-project.org) with:
``` r
install.packages("mreg")
```
And the development version from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("shug0131/mreg")
```
## Example
This is a basic example which shows you how to solve a common problem:
```{r example, warning=FALSE}
library(mreg)
mod1 <- mreg( damaged~offset(log(intervisit.time))+esr.init,
data=public,patid=ptno,print.level=1, iterlim=1000 )
mod1
summary(mod1)
```