-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
272 lines (226 loc) · 10.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from pathlib import Path
from shutil import rmtree
from typing import Union, List, Dict, Tuple, Optional
from tqdm import tqdm
import requests
import gradio as gr
from llama_cpp import Llama
# ================== ANNOTATIONS ========================
CHAT_HISTORY = List[Optional[Dict[str, Optional[str]]]]
MODEL_DICT = Dict[str, Llama]
# ================== FUNCS =============================
def download_file(file_url: str, file_path: Union[str, Path]) -> None:
response = requests.get(file_url, stream=True)
if response.status_code != 200:
raise Exception(f'Файл недоступен для скачивания по ссылке: {file_url}')
total_size = int(response.headers.get('content-length', 0))
progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True)
progress_gradio = gr.Progress()
completed_size = 0
with open(file_path, 'wb') as file:
for data in response.iter_content(chunk_size=4096):
size = file.write(data)
progress_tqdm.update(size)
completed_size += size
desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB'
progress_gradio(completed_size/total_size, desc=desc)
def download_gguf_and_init_model(gguf_url: str, model_dict: MODEL_DICT) -> Tuple[MODEL_DICT, bool, str]:
log = ''
if not gguf_url.endswith('.gguf'):
log += f'The link must be a direct link to the GGUF file\n'
return model_dict, log
gguf_filename = gguf_url.rsplit('/')[-1]
model_path = MODELS_PATH / gguf_filename
progress = gr.Progress()
if not model_path.is_file():
progress(0.3, desc='Шаг 1/2: Loading GGUF model file')
try:
download_file(gguf_url, model_path)
log += f'Model file {gguf_filename} successfully loaded\n'
except Exception as ex:
log += f'Error loading model from link {gguf_url}, error code:\n{ex}\n'
curr_model = model_dict.get('model')
if curr_model is None:
log += f'Model is missing from dictionary "model_dict"\n'
return model_dict, load_log
curr_model_filename = Path(curr_model.model_path).name
log += f'Current initialized model: {curr_model_filename}\n'
return model_dict, log
else:
log += f'Model file {gguf_filename} loaded, initializing model...\n'
progress(0.7, desc='Шаг 2/2: Model initialization')
model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=True)
model_dict = {'model': model}
support_system_role = 'System role not supported' not in model.metadata['tokenizer.chat_template']
log += f'Model {gguf_filename} initialized\n'
return model_dict, support_system_role, log
def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]:
if user_message:
chatbot.append({'role': 'user', 'metadata': {'title': None}, 'content': user_message})
return '', chatbot
def bot_response_to_chatbot(
chatbot: CHAT_HISTORY,
model_dict: MODEL_DICT,
system_prompt: str,
support_system_role: bool,
history_len: int,
do_sample: bool,
*generate_args,
):
model = model_dict.get('model')
if model is None:
gr.Info('Model not initialized')
yield chatbot
return
if len(chatbot) == 0 or chatbot[-1]['role'] == 'assistant':
yield chatbot
return
messages = []
if support_system_role and system_prompt:
messages.append({'role': 'system', 'metadata': {'title': None}, 'content': system_prompt})
if history_len != 0:
messages.extend(chatbot[:-1][-(history_len*2):])
messages.append(chatbot[-1])
gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args))
gen_kwargs['top_k'] = int(gen_kwargs['top_k'])
if not do_sample:
gen_kwargs['top_p'] = 0.0
gen_kwargs['top_k'] = 1
gen_kwargs['repeat_penalty'] = 1.0
stream_response = model.create_chat_completion(
messages=messages,
stream=True,
**gen_kwargs,
)
chatbot.append({'role': 'assistant', 'metadata': {'title': None}, 'content': ''})
for chunk in stream_response:
token = chunk['choices'][0]['delta'].get('content')
if token is not None:
chatbot[-1]['content'] += token
yield chatbot
def get_system_prompt_component(interactive: bool) -> gr.Textbox:
value = '' if interactive else 'System prompt is not supported by this model'
return gr.Textbox(value=value, label='System prompt', interactive=interactive)
def get_generate_args(do_sample: bool) -> List[gr.component]:
generate_args = [
gr.Slider(minimum=0.1, maximum=3, value=GENERATE_KWARGS['temperature'], step=0.1, label='temperature', visible=do_sample),
gr.Slider(minimum=0, maximum=1, value=GENERATE_KWARGS['top_p'], step=0.01, label='top_p', visible=do_sample),
gr.Slider(minimum=1, maximum=50, value=GENERATE_KWARGS['top_k'], step=1, label='top_k', visible=do_sample),
gr.Slider(minimum=1, maximum=5, value=GENERATE_KWARGS['repeat_penalty'], step=0.1, label='repeat_penalty', visible=do_sample),
]
return generate_args
# ================== VARIABLES =============================
MODELS_PATH = Path('models')
MODELS_PATH.mkdir(exist_ok=True)
DEFAULT_GGUF_URL = 'https://huggingface.co/bartowski/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it-Q8_0.gguf'
start_model_dict, start_support_system_role, start_load_log = download_gguf_and_init_model(
gguf_url=DEFAULT_GGUF_URL, model_dict={},
)
GENERATE_KWARGS = dict(
temperature=0.2,
top_p=0.95,
top_k=40,
repeat_penalty=1.0,
)
theme = gr.themes.Base(primary_hue='green', secondary_hue='yellow', neutral_hue='zinc').set(
loader_color='rgb(0, 255, 0)',
slider_color='rgb(0, 200, 0)',
body_text_color_dark='rgb(0, 200, 0)',
button_secondary_background_fill_dark='green',
)
css = None
# css = '.gradio-container {width: 60% !important}'
# ================== INTERFACE =============================
with gr.Blocks(theme=theme, css=css) as interface:
model_dict = gr.State(start_model_dict)
support_system_role = gr.State(start_support_system_role)
# ================= CHAT BOT PAGE ======================
with gr.Tab('Chatbot'):
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
type='messages', # new in gradio 5+
show_copy_button=True,
bubble_full_width=False,
height=480,
)
user_message = gr.Textbox(label='User')
with gr.Row():
user_message_btn = gr.Button('Send')
stop_btn = gr.Button('Stop')
clear_btn = gr.Button('Clear')
system_prompt = get_system_prompt_component(interactive=support_system_role.value)
with gr.Column(scale=1, min_width=80):
with gr.Group():
gr.Markdown('Length of message history')
history_len = gr.Slider(
minimum=0,
maximum=10,
value=0,
step=1,
info='Number of previous messages taken into account in history',
label='history_len',
show_label=False,
)
with gr.Group():
gr.Markdown('Generation parameters')
do_sample = gr.Checkbox(
value=False,
label='do_sample',
info='Activate random sampling',
)
generate_args = get_generate_args(do_sample.value)
do_sample.change(
fn=get_generate_args,
inputs=do_sample,
outputs=generate_args,
show_progress=False,
)
generate_event = gr.on(
triggers=[user_message.submit, user_message_btn.click],
fn=user_message_to_chatbot,
inputs=[user_message, chatbot],
outputs=[user_message, chatbot],
).then(
fn=bot_response_to_chatbot,
inputs=[chatbot, model_dict, system_prompt, support_system_role, history_len, do_sample, *generate_args],
outputs=[chatbot],
)
stop_btn.click(
fn=None,
inputs=None,
outputs=None,
cancels=generate_event,
)
clear_btn.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
)
# ================= LOAD MODELS PAGE ======================
with gr.Tab('Load model'):
gguf_url = gr.Textbox(
value='',
label='Link to GGUF',
placeholder='URL link to the model in GGUF format',
)
load_model_btn = gr.Button('Downloading GGUF and initializing model')
load_log = gr.Textbox(
value=start_load_log,
label='Model loading status',
lines=3,
)
load_model_btn.click(
fn=download_gguf_and_init_model,
inputs=[gguf_url, model_dict],
outputs=[model_dict, support_system_role, load_log],
).success(
fn=get_system_prompt_component,
inputs=[support_system_role],
outputs=[system_prompt],
)
gr.HTML("""<h3 style='text-align: center'>
<a href="https://github.com/sergey21000/gradio-llamacpp-chatbot" target='_blank'>GitHub Repository</a></h3>
""")
if __name__ == '__main__':
interface.launch(server_name='0.0.0.0', server_port=7860)