-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
105 lines (93 loc) · 3.66 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from pathlib import Path
# document loaders
from langchain_community.document_loaders import (
CSVLoader,
PDFMinerLoader,
PyPDFLoader,
TextLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
YoutubeLoader,
DirectoryLoader,
)
# langchain classes for extracting text from various sources
LOADER_CLASSES = {
'.csv': CSVLoader,
'.doc': UnstructuredWordDocumentLoader,
'.docx': UnstructuredWordDocumentLoader,
'.html': UnstructuredHTMLLoader,
'.md': UnstructuredMarkdownLoader,
'.pdf': PDFMinerLoader,
'.ppt': UnstructuredPowerPointLoader,
'.pptx': UnstructuredPowerPointLoader,
'.txt': TextLoader,
'web': WebBaseLoader,
'directory': DirectoryLoader,
'youtube': YoutubeLoader,
}
# languages for youtube subtitles
SUBTITLES_LANGUAGES = ['ru', 'en']
# prom template subject to context
CONTEXT_TEMPLATE = '''Ответь на вопрос при условии контекста.
Контекст:
{context}
Вопрос:
{user_message}
Ответ:'''
# dictionary for text generation config
GENERATE_KWARGS = dict(
temperature=0.2,
top_p=0.95,
top_k=40,
repeat_penalty=1.0,
)
# paths to LLM and embeddings models
LLM_MODELS_PATH = Path('models')
EMBED_MODELS_PATH = Path('embed_models')
LLM_MODELS_PATH.mkdir(exist_ok=True)
EMBED_MODELS_PATH.mkdir(exist_ok=True)
# available when running the LLM application models in GGUF format
LLM_MODEL_REPOS = [
# https://huggingface.co/bartowski/gemma-2-2b-it-GGUF
'bartowski/gemma-2-2b-it-GGUF',
# https://huggingface.co/bartowski/Qwen2.5-3B-Instruct-GGUF
'bartowski/Qwen2.5-3B-Instruct-GGUF',
# https://huggingface.co/bartowski/Qwen2.5-1.5B-Instruct-GGUF
'bartowski/Qwen2.5-1.5B-Instruct-GGUF',
# https://huggingface.co/bartowski/openchat-3.6-8b-20240522-GGUF
'bartowski/openchat-3.6-8b-20240522-GGUF',
# https://huggingface.co/bartowski/Mistral-7B-Instruct-v0.3-GGUF
'bartowski/Mistral-7B-Instruct-v0.3-GGUF',
# https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF
'bartowski/Llama-3.2-3B-Instruct-GGUF',
]
# Embedding models available at application startup
EMBED_MODEL_REPOS = [
# https://huggingface.co/sergeyzh/rubert-tiny-turbo # 117 MB
'sergeyzh/rubert-tiny-turbo',
# https://huggingface.co/cointegrated/rubert-tiny2 # 118 MB
'cointegrated/rubert-tiny2',
# https://huggingface.co/cointegrated/LaBSE-en-ru # 516 MB
'cointegrated/LaBSE-en-ru',
# https://huggingface.co/sergeyzh/LaBSE-ru-turbo # 513 MB
'sergeyzh/LaBSE-ru-turbo',
# https://huggingface.co/intfloat/multilingual-e5-large # 2.24 GB
'intfloat/multilingual-e5-large',
# https://huggingface.co/intfloat/multilingual-e5-base # 1.11 GB
'intfloat/multilingual-e5-base',
# https://huggingface.co/intfloat/multilingual-e5-small # 471 MB
'intfloat/multilingual-e5-small',
# https://huggingface.co/intfloat/multilingual-e5-large-instruct # 1.12 GB
'intfloat/multilingual-e5-large-instruct',
# https://huggingface.co/sentence-transformers/all-mpnet-base-v2 # 438 MB
'sentence-transformers/all-mpnet-base-v2',
# https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2 # 1.11 GB
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
# https://huggingface.co/ai-forever?search_models=ruElectra # 356 MB
'ai-forever/ruElectra-medium',
# https://huggingface.co/ai-forever/sbert_large_nlu_ru # 1.71 GB
'ai-forever/sbert_large_nlu_ru',
]