forked from NVIDIA/apex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fp16_optimizer.py
executable file
·243 lines (218 loc) · 10.2 KB
/
fp16_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
from apex.multi_tensor_apply import multi_tensor_applier
class FP16_Optimizer(object):
"""
:class:`FP16_Optimizer` A cutdown version of apex.fp16_utils.FP16_Optimizer.
Designed only to wrap apex.contrib.optimizers.FusedAdam, FusedSGD.
Refer to apex.fp16_utils documents for more information.
Example::
model = torch.nn.Linear(D_in, D_out).cuda().half()
optimizer = apex.contrib.optimizers.FusedSGD(model.parameters())
optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
...
# loss.backward() becomes:
optimizer.backward(loss)
...
Example with dynamic loss scaling::
...
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
# optional arg to control dynamic loss scaling behavior
# dynamic_loss_args={'scale_window' : 500})
# Usually, dynamic_loss_args is not necessary.
"""
def __init__(self,
init_optimizer,
static_loss_scale=1.0,
dynamic_loss_scale=False,
dynamic_loss_args=None,
verbose=True):
print("\nThis fp16_optimizer is designed to only work with apex.contrib.optimizers.*")
print("To update, use updated optimizers with AMP.")
# The fused optimizer does all the work. We need this layer for two reason:
# 1. maintain same user API from apex.fp16_utils
# 2. keep common stuff here in case we need to add new fused optimizer later
if not torch.cuda.is_available:
raise SystemError("Cannot use fp16 without CUDA.")
self.optimizer = init_optimizer
self.fp16_groups = [] # model params
self.fp32_groups = [] # master weights
# iterate over param_groups
for param_group in self.optimizer.param_groups:
fp16_group = []
fp32_group = []
for p in param_group['params']:
fp16_group.append(p)
fp32_group.append(p.clone().float().detach())
self.fp16_groups.append(fp16_group)
self.fp32_groups.append(fp32_group)
param_group['params'] = fp32_group
if multi_tensor_applier.available:
import amp_C
self.overflow_buf = torch.cuda.IntTensor([0])
self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm
else:
raise RuntimeError('FP16_Optimizer requires cuda extensions')
# we may have a way of fusing dynamic scale. Do not support for now
if dynamic_loss_scale:
if dynamic_loss_args is not None:
raise SystemError("Do not support dynamic loss scale args for now.")
self.dynamic_loss_scale = True
self.cur_scale = 2**16
self.cur_iter = 0
self.last_overflow_iter = -1
self.scale_factor = 2
self.scale_window = 1000
else:
self.dynamic_loss_scale = False
self.cur_iter = 0
self.cur_scale = static_loss_scale
self.verbose = verbose
def zero_grad(self, set_grads_to_None=True):
"""
Zero FP16 parameter grads.
"""
# FP32 grad should never exist.
# For speed, set model fp16 grad to None by default
for group in self.fp16_groups:
for p in group:
if set_grads_to_None:
p.grad = None
else:
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
def step(self, closure=None):
"""
Not supporting closure.
"""
fp16_grads = []
norm_groups = []
skip = False
for group in self.fp16_groups:
fp16_grad = []
for i, p in enumerate(group):
fp16_grad.append(p.grad)
fp16_grads.append(fp16_grad)
# nan check
self.overflow_buf.zero_()
for fp16_grad in fp16_grads:
if len(fp16_grad) > 0:
norm, norm_per_tensor = multi_tensor_applier(self.multi_tensor_l2norm,
self.overflow_buf,
[fp16_grad], True)
norm_groups.append(norm)
if self.overflow_buf.item() != 0:
skip = True
if skip:
self._update_scale(skip)
return
# norm is in fact norm*cur_scale
self.optimizer.step(grads=fp16_grads,
output_params=self.fp16_groups,
scale=self.cur_scale,
grad_norms=norm_groups)
self._update_scale(False)
return
def backward(self, loss):
"""
:attr:`backward` performs the following steps:
1. fp32_loss = loss.float()
2. scaled_loss = fp32_loss*loss_scale
3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's fp16 leaves
"""
scaled_loss = (loss.float()) * self.cur_scale
scaled_loss.backward()
def _update_scale(self, skip):
if self.dynamic_loss_scale:
if skip:
if self.verbose:
print("\nGrad overflow on iteration", self.cur_iter)
print("Using dynamic loss scale of", self.cur_scale)
self.cur_scale = max(self.cur_scale/self.scale_factor, 1)
self.last_overflow_iter = self.cur_iter
else:
if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0:
self.cur_scale *= self.scale_factor
else:
if skip:
print("\nGrad overflow on iteration", self.cur_iter)
print("Using static loss scale of", self.cur_scale)
self.cur_iter +=1
return
# Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
def _get_state(self):
return self.optimizer.state
def _set_state(self, value):
self.optimizer.state = value
state = property(_get_state, _set_state)
# Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
# (for example, to adjust the learning rate)
def _get_param_groups(self):
return self.optimizer.param_groups
def _set_param_groups(self, value):
self.optimizer.param_groups = value
param_groups = property(_get_param_groups, _set_param_groups)
def state_dict(self):
"""
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
of the contained Pytorch optimizer.
Example::
checkpoint = {}
checkpoint['model'] = model.state_dict()
checkpoint['optimizer'] = optimizer.state_dict()
torch.save(checkpoint, "saved.pth")
"""
state_dict = {}
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
state_dict['cur_scale'] = self.cur_scale
state_dict['cur_iter'] = self.cur_iter
if state_dict['dynamic_loss_scale']:
state_dict['last_overflow_iter'] = self.last_overflow_iter
state_dict['scale_factor'] = self.scale_factor
state_dict['scale_window'] = self.scale_window
state_dict['optimizer_state_dict'] = self.optimizer.state_dict()
state_dict['fp32_groups'] = self.fp32_groups
return state_dict
def load_state_dict(self, state_dict):
"""
Loads a state_dict created by an earlier call to state_dict().
If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
whose parameters in turn came from ``model``, it is expected that the user
will call ``model.load_state_dict()`` before
``fp16_optimizer_instance.load_state_dict()`` is called.
Example::
model = torch.nn.Linear(D_in, D_out).cuda().half()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
...
checkpoint = torch.load("saved.pth")
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
"""
# I think it should actually be ok to reload the optimizer before the model.
self.dynamic_loss_scale = state_dict['dynamic_loss_scale']
self.cur_scale = state_dict['cur_scale']
self.cur_iter = state_dict['cur_iter']
if state_dict['dynamic_loss_scale']:
self.last_overflow_iter = state_dict['last_overflow_iter']
self.scale_factor = state_dict['scale_factor']
self.scale_window = state_dict['scale_window']
self.optimizer.load_state_dict(state_dict['optimizer_state_dict'])
# At this point, the optimizer's references to the model's fp32 parameters are up to date.
# The optimizer's hyperparameters and internal buffers are also up to date.
# However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
# out of date. There are two options.
# 1: Refresh the master params from the model's fp16 params.
# This requires less storage but incurs precision loss.
# 2: Save and restore the fp32 master copies separately.
# We choose option 2.
#
# Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
# of their associated parameters, because it's possible those buffers might not exist yet in
# the current optimizer instance. In our case, as long as the current FP16_Optimizer has been
# constructed in the same way as the one whose state_dict we are loading, the same master params
# are guaranteed to exist, so we can just copy_() from the saved master params.
for current, saved in zip(self.fp32_groups, state_dict['fp32_groups']):
for _current, _saved in zip(current, saved):
_current.data.copy_(_saved.data)