forked from NVIDIA/apex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fmha.py
76 lines (64 loc) · 3.49 KB
/
fmha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
###############################################################################
# Copyright (c) 2011-2021, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
###############################################################################
import torch
import torch.nn.functional as F
import fmhalib as mha
class FMHAFun(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cu_seqlens, p_dropout, max_s, is_training, zero_tensors):
batch_size = cu_seqlens.numel() - 1
if batch_size < 4:
max_s = 512
context, S_dmask = mha.fwd_nl(qkv, cu_seqlens, p_dropout, max_s, is_training, True, zero_tensors, None)
else:
context, S_dmask = mha.fwd(qkv, cu_seqlens, p_dropout, max_s, is_training, False, zero_tensors, None)
ctx.save_for_backward(qkv, S_dmask)
ctx.cu_seqlens = cu_seqlens
ctx.p_dropout = p_dropout
ctx.max_s = max_s
ctx.zero_tensors = zero_tensors
return context
@staticmethod
def backward(ctx, dout):
qkv, S_dmask = ctx.saved_tensors
batch_size = ctx.cu_seqlens.numel() - 1
if batch_size < 4:
dqkv, dp, _ = mha.bwd_nl(dout, qkv, S_dmask, ctx.cu_seqlens, ctx.p_dropout, ctx.max_s, ctx.zero_tensors)
else:
dqkv, dp = mha.bwd(dout, qkv, S_dmask, ctx.cu_seqlens, ctx.p_dropout, ctx.max_s, ctx.zero_tensors)
return dqkv, None, None, None, None, None
class FMHA(torch.nn.Module):
def __init__(self, config):
super(FMHA, self).__init__()
self.p_dropout = config.attention_probs_dropout_prob
self.h = config.num_attention_heads
self.hidden_size = config.hidden_size
self.d = self.hidden_size // self.h
assert self.d * self.h == self.hidden_size, "Invalid hidden size/num_heads"
def forward(self, qkv, cu_seqlens, max_s, is_training=True, zero_tensors=False):
ctx = FMHAFun.apply(qkv.view(-1, 3, self.h, self.d), cu_seqlens, self.p_dropout, max_s, is_training, zero_tensors)
return ctx.view(-1, self.hidden_size)