-
Notifications
You must be signed in to change notification settings - Fork 660
Open
Labels
Milestone
Description
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of scanpy.
- (optional) I have confirmed this bug exists on the master branch of scanpy.
I noticed that running the same single-cell analyses on different nodes of our HPC produces different results.
Starting from the same anndata object with a precomputed X_scVI
latent representation, the UMAP and leiden-clustering looks different.
On
- Intel(R) Xeon(R) CPU E5-2699A v4 @ 2.40GHz
- AMD EPYC 7352 24-Core Processor
- Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10GHz
adata.obs["leiden"].value_counts()
0 4268
1 2132
2 1691
3 1662
4 1659
5 1563
...
On
- Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz
0 3856
1 2168
2 2029
3 1659
4 1636
5 1536
...
Minimal code sample (that we can copy&paste without having any data)
A git repository with example data, notebook and a nextflow pipeline is available here:
https://github.com/grst/scanpy_reproducibility
A report of the analysis executed on four different CPU architectures is available here:
https://grst.github.io/scanpy_reproducibility/
Versions
WARNING: If you miss a compact list, please try `print_header`!
-----
anndata 0.7.5
scanpy 1.6.0
sinfo 0.3.1
-----
PIL 8.0.1
anndata 0.7.5
backcall 0.2.0
cairo 1.20.0
cffi 1.14.4
colorama 0.4.4
cycler 0.10.0
cython_runtime NA
dateutil 2.8.1
decorator 4.4.2
get_version 2.1
h5py 3.1.0
igraph 0.8.3
ipykernel 5.3.4
ipython_genutils 0.2.0
jedi 0.17.2
joblib 0.17.0
kiwisolver 1.3.1
legacy_api_wrap 0.0.0
leidenalg 0.8.3
llvmlite 0.35.0
matplotlib 3.3.3
mpl_toolkits NA
natsort 7.1.0
numba 0.52.0
numexpr 2.7.1
numpy 1.19.4
packaging 20.7
pandas 1.1.4
parso 0.7.1
pexpect 4.8.0
pickleshare 0.7.5
pkg_resources NA
prompt_toolkit 3.0.8
ptyprocess 0.6.0
pycparser 2.20
pygments 2.7.2
pyparsing 2.4.7
pytz 2020.4
scanpy 1.6.0
scipy 1.5.3
setuptools_scm NA
sinfo 0.3.1
six 1.15.0
sklearn 0.23.2
sphinxcontrib NA
storemagic NA
tables 3.6.1
texttable 1.6.3
tornado 6.1
traitlets 5.0.5
umap 0.4.6
wcwidth 0.2.5
yaml 5.3.1
zmq 20.0.0
-----
IPython 7.19.0
jupyter_client 6.1.7
jupyter_core 4.7.0
-----
Python 3.8.6 | packaged by conda-forge | (default, Nov 27 2020, 19:31:52) [GCC 9.3.0]
Linux-3.10.0-1160.11.1.el7.x86_64-x86_64-with-glibc2.10
64 logical CPU cores, x86_64
-----
Session information updated at 2021-10-15 09:58