-
Notifications
You must be signed in to change notification settings - Fork 1
/
ecdsa_certificates.py
219 lines (162 loc) · 7.95 KB
/
ecdsa_certificates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
from time import time as timestamp
from base64 import b64encode, b64decode
import sshcert_utils as utils
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric.utils import decode_dss_signature
CURVES = {
'secp256r1': hashes.SHA256,
'secp384r1': hashes.SHA384,
'secp521r1': hashes.SHA512
}
def make_ecdsa_certificate(
user_pubkey_path: str,
ca_pubkey_path: str,
ca_privkey_path: str,
ca_privkey_pass: str = "password",
attributes: dict = {},
auto_verify: bool = True
):
# Load the user public key
with open(user_pubkey_path, 'r') as f:
file_content = f.read().split(' ')
# Get the two major parts from the file
# The certificate data
data = b64decode(file_content[1])
# And the comment at the end of the file (e.g. User@Host)
user_comment = file_content[2]
# Convert the user public key to its parts
# The Key type (e.g. ecdsa-sha2-nistp256)
user_keytype, data = utils.decode_string(data)
# The curve (e.g. nistp256)
user_keycurve, data = utils.decode_string(data)
# The public key in bytes
user_pubkey, data = utils.decode_string(data)
# Load the key data for the CA Public Key
# For this, we just need the entire key data in byte format
with open(ca_pubkey_path, 'r') as f:
ca_pubkey = b64decode(f.read().split(' ')[1])
# Load the data for the CA Private key as bytes
with open(ca_privkey_path, 'rb') as f:
ca_privkey = f.read()
# Create an empty Bytes object
certificate = b''
# Add the certificate type
# This is based on the users certificate type
# For ECDSA, this is usually [email protected]
# where XXX is the length of the curve in bits
certificate += utils.encode_string(b'%[email protected]' % user_keytype)
# Add the nonce
# This is the random part of the certificate which is used
# to prevent hash collision attacks against the CA private key
# This is really important, seeing as if an attacker has access to two signed messages with the same nonce
# they can deduct the private key from this.
# Read more here: https://billatnapier.medium.com/ecdsa-weakness-where-nonces-are-reused-2be63856a01a
nonce = utils.generate_secure_nonce(32)
certificate += utils.encode_string(nonce)
# Add the curve used to create the user key
# certificate += utils.encode_string(user_keycurve)
certificate += utils.encode_string(user_keycurve)
# Add the users public key
certificate += utils.encode_string(user_pubkey)
# Add the serial number (numeric)
certificate += utils.encode_int64(attributes.get('serial', 123456))
# Add the certificate type
# 1: OpenSSH User Certificate
# 2: OpenSSH Host Certificate
certificate += utils.encode_int(attributes.get('type', 1))
# Add the key ID (string)
certificate += utils.encode_string(attributes.get('key_id', 'abcdefgh'))
# Add the list of valid principals
certificate += utils.encode_list(attributes.get('valid_principals', ['root', 'user']))
# Add the "Valid after"-timestamp to specify when the validity starts
certificate += utils.encode_int64(attributes.get('valid_after', int(timestamp())))
# Add the "Valid before"-timestamp to specify when the validity ends
certificate += utils.encode_int64(attributes.get('valid_before', int(timestamp()) + (60 * 60 * 12)))
# Add any critical options to the certificate
certificate += utils.encode_list(attributes.get('critical_options', []), True)
# This is encoded a bit differently than the principals list, with null bytes inserted between each extensions
certificate += utils.encode_list(attributes.get('extensions', ['permit-agent-forwarding']), True)
# Add the reserved part (empty, reserved for future functionality)
certificate += utils.encode_string(attributes.get('reserved', ''))
# Add the signing CA Public Key
certificate += utils.encode_string(ca_pubkey)
# Create the signature
# Load the CA Private key from the OpenSSH format
ca_privkey = serialization.load_ssh_private_key(
data=ca_privkey,
password=ca_privkey_pass.encode('utf-8'),
backend=default_backend()
)
# Get the curve used in the private key
curve = ec.ECDSA(CURVES[ca_privkey.curve.name]())
# Create the signature
signature = ca_privkey.sign(
certificate,
curve
)
# Get the signature parts, r and s
r, s = decode_dss_signature(signature)
# Add the signature to the certificate
certificate += utils.encode_dsa_signature(r, s, 'ecdsa-sha2-nistp%d' % ca_privkey.curve.key_size)
# Write the certificate to file
filename = f'{user_pubkey_path.split("/")[-1].split(".")[0]}-cert.pub'
with open(filename, 'wb') as f:
f.write( b'%[email protected] %b %b' % (
user_keytype,
b64encode(certificate),
user_comment.encode()
)
)
# Verify the certificate with SSH-Keygen
if auto_verify:
os.system(f'ssh-keygen -Lf {filename}')
def decode_ecdsa_certificate(certificate_path: str):
with open(certificate_path, 'r') as f:
certificate = b64decode(f.read().split(' ')[1])
cert_decoded = {}
# Get the certificate type
cert_decoded['ktype'], certificate = utils.decode_string(certificate)
# Get the nonce
cert_decoded['nonce'], certificate = utils.decode_string(certificate)
# Get the user key curve
cert_decoded['curve'], certificate = utils.decode_string(certificate)
# Get the user public key
cert_decoded['pubkey'], certificate = utils.decode_string(certificate)
# Get the serial number
cert_decoded['serial'], certificate = utils.decode_int64(certificate)
# Get the certificate type
cert_decoded['ctype'], certificate = utils.decode_int(certificate)
# Get the certificate key ID
cert_decoded['key_id'], certificate = utils.decode_string(certificate)
# Get the certificate principals
cert_decoded['valid_principals'], certificate = utils.decode_list(certificate)
# Get the certificate valid after
cert_decoded['valid_after'], certificate = utils.decode_int64(certificate)
# Get the certificate valid before
cert_decoded['valid_before'], certificate = utils.decode_int64(certificate)
# Get the certificate critical options
cert_decoded['critical_options'], certificate = utils.decode_list(certificate, True)
# Get the certificate extensions
cert_decoded['extensions'], certificate = utils.decode_list(certificate, True)
# Get the reserved part
cert_decoded['reserved'], certificate = utils.decode_string(certificate)
# Get the CA public key
cert_decoded['ca_pubkey'], certificate = utils.decode_string(certificate)
# Get the signature
cert_decoded['signature'], _ = utils.decode_dsa_signature(certificate)
cert_decoded['pubkey'] = b64encode(cert_decoded['pubkey']).decode('utf-8')
cert_decoded['ca_pubkey'] = b64encode(cert_decoded['ca_pubkey']).decode('utf-8')
cert_decoded['signature']['curve'] = cert_decoded['signature']['curve'].decode('utf-8')
for item in cert_decoded.keys():
if isinstance(cert_decoded[item], bytes):
cert_decoded[item] = cert_decoded[item].decode('utf-8')
if isinstance(cert_decoded[item], list):
newlst = []
for litem in cert_decoded[item]:
if isinstance(litem, bytes):
newlst.append(litem.decode('utf-8'))
cert_decoded[item] = newlst
return cert_decoded