-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbayesian_3loop.py
272 lines (226 loc) · 11.3 KB
/
bayesian_3loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from __future__ import print_function
import logging
import GPUtil
from torch.autograd import Variable
import torch.utils.data
import torch.optim as optim
import torch
import numpy as np
import optimal_transport_modules.log_utils as LLU
import optimal_transport_modules.generate_data as g_data
import optimal_transport_modules.generate_NN as g_NN
import optimal_transport_modules.pytorch_utils as PTU
from optimal_transport_modules.cfg import CfgBayesian as Cfg_class
cfg = Cfg_class()
gpus_choice = GPUtil.getFirstAvailable(
order='random', maxLoad=0.5, maxMemory=0.5, attempts=1, interval=900, verbose=False)
PTU.set_gpu_mode(True, gpus_choice[0])
cfg.LR_f = cfg.LR_g
cfg.NUM_NEURON_h = cfg.NUM_NEURON
results_save_path, model_save_path, results, testresults = LLU.init_path(cfg)
kwargs = {'num_workers': 4, 'pin_memory': True}
##### For computing the constraint loss of negtive weights ######
def compute_constraint_loss(list_of_params):
loss_val = 0
for p in list_of_params:
loss_val += torch.relu(-p).pow(2).sum()
return loss_val
"""""""""""""""""""""""""""""""""""""""""""""""""""
Data and neural network setup
"""""""""""""""""""""""""""""""""""""""""""""""""""
total_data = g_data.marginal_data_generator_bayesian_3loop(cfg)
train_loader = torch.utils.data.DataLoader(
total_data, batch_size=cfg.BATCH_SIZE, shuffle=True, **kwargs)
convex_f, convex_g, generator_h = g_NN.generate_FixedWeight_NN(cfg)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Initialization with some positive parameters
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
f_positive_params = []
g_positive_params = []
for i in range(cfg.NUM_DISTRIBUTION):
for p in list(convex_f[i].parameters()):
if hasattr(p, 'be_positive'):
f_positive_params.append(p)
for p in list(convex_g[i].parameters()):
if hasattr(p, 'be_positive'):
g_positive_params.append(p)
convex_f[i].cuda(PTU.device)
convex_g[i].cuda(PTU.device)
generator_h.cuda(PTU.device)
optimizer_f = []
optimizer_g = []
if cfg.optimizer is 'Adam':
for i in range(cfg.NUM_DISTRIBUTION):
optimizer_f.append(optim.Adam(convex_f[i].parameters(), lr=cfg.LR_f))
optimizer_g.append(
optim.Adam(convex_g[i].parameters(), lr=cfg.LR_g))
optimizer_h = optim.Adam(
generator_h.parameters(),
lr=cfg.LR_h)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Training function definition
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
############## For each function here, it's an epoch ##################
def train(epoch):
convex_f.train()
convex_g.train()
generator_h.train()
# These values are just for saving data
w2_loss_value_epoch = 0
g_OT_loss_value_epoch = [0] * cfg.NUM_DISTRIBUTION
g_constraints_loss_value_epoch = 0
remaining_f_loss_value_epoch = [0] * cfg.NUM_DISTRIBUTION
mu_2moment_loss_value_epoch = 0
for batch_idx, real_data in enumerate(train_loader):
real_data = real_data.cuda(PTU.device)
miu_i = real_data[:, :, 0:cfg.NUM_DISTRIBUTION]
epsilon = real_data[:, :, cfg.NUM_DISTRIBUTION]
miu_i = Variable(miu_i, requires_grad=True)
epsilon = Variable(epsilon)
# containing four distribution
g_OT_loss_value_batch = [0] * cfg.NUM_DISTRIBUTION
g_constraints_loss_value_batch = 0 # containing four g networks
remaining_f_loss_value_batch = [0] * cfg.NUM_DISTRIBUTION
mu_2moment_loss_value_batch = 0
######################################################
# Medium Loop Begin #
######################################################
######### Here iterate over a given number: cfg.N_Fnet_ITERS=4 ##
for medium_iter in range(1, cfg.N_Fnet_ITERS + 1):
######################################################
# Inner Loop Begin #
######################################################
######### Here iterate over a given number: cfg.N_Gnet_ITERS=16 ##
for inner_iter in range(1, cfg.N_Gnet_ITERS + 1):
loss_g = torch.ones(cfg.NUM_DISTRIBUTION)
for i in range(cfg.NUM_DISTRIBUTION):
optimizer_g[i].zero_grad()
# Get the gradient of g(y):=g(miu_i_data)
tmp_miu_i = miu_i[:, :, i]
g_of_y = convex_g[i](tmp_miu_i).sum()
grad_g_of_y = torch.autograd.grad(
g_of_y, tmp_miu_i, create_graph=True)[0]
# For each distribution you need to calculate a f(gradient of y)
# it's the mean of the batch
f_grad_g_y = convex_f[i](grad_g_of_y).mean()
# The 1st loss part useful for f/g parameters
loss_g[i] = f_grad_g_y - torch.dot(
grad_g_of_y.reshape(-1), miu_i[:, :, i].reshape(-1)) / cfg.BATCH_SIZE
g_OT_loss_value_batch[i] += loss_g[i].item()
total_loss_g = loss_g.sum()
total_loss_g.backward()
# The 2nd loss part useful for g parameters:
g_positive_constraints_loss = cfg.LAMBDA_CVX * \
compute_constraint_loss(
g_positive_params)
g_constraints_loss_value_batch += g_positive_constraints_loss.item()
g_positive_constraints_loss.backward()
# ! update g
for i in range(cfg.NUM_DISTRIBUTION):
optimizer_g[i].step()
# Just for the last iteration keep the gradient on f intact
if inner_iter != cfg.N_Gnet_ITERS:
for i in range(cfg.NUM_DISTRIBUTION):
optimizer_f[i].zero_grad()
######################################################
# Inner Loop Ends #
######################################################
miu = generator_h(epsilon)
remaining_f_loss = torch.ones(cfg.NUM_DISTRIBUTION)
# The 3rd loss part useful for f/h parameters
for i in range(cfg.NUM_DISTRIBUTION):
remaining_f_loss[i] = - convex_f[i](miu).mean()
remaining_f_loss_value_batch[i] += remaining_f_loss[i].item()
total_remaining_f_loss = remaining_f_loss.sum()
total_remaining_f_loss.backward(retain_graph=True)
# Flip the gradient sign for parameters in convex f
# Because we need to solve "sup" of the loss for f
for p in list(convex_f.parameters()):
p.grad.copy_(-p.grad)
# ! update f
for i in range(cfg.NUM_DISTRIBUTION):
optimizer_f[i].step()
# Clamp the positive constraints on the convex_f_params
for p in f_positive_params:
p.data.copy_(torch.relu(p.data))
if medium_iter != cfg.N_Fnet_ITERS:
optimizer_h.zero_grad()
######################################################
# Medium Loop Ends #
######################################################
# The 4th loss part useful for h parameters:
# ? keep untouched for all weights
# mu_2moment_loss_value_batch is total 4 distributions combined F
mu_2moment_loss = 0.5 * \
miu.pow(2).sum(dim=1).mean() * cfg.NUM_DISTRIBUTION
mu_2moment_loss_value_batch += mu_2moment_loss.item() / cfg.NUM_DISTRIBUTION
# ! update h
mu_2moment_loss.backward()
optimizer_h.step()
# The four parts loss gradients are accumulated
g_OT_loss_value_batch[:] = [
item / (cfg.N_Gnet_ITERS * cfg.N_Fnet_ITERS) for item in g_OT_loss_value_batch]
remaining_f_loss_value_batch[:] = [
item / cfg.N_Fnet_ITERS for item in remaining_f_loss_value_batch]
g_constraints_loss_value_batch /= (cfg.N_Gnet_ITERS *
cfg.N_Fnet_ITERS)
##### Calculate W2 batch loss ###############
w2_loss_value_batch = (sum(g_OT_loss_value_batch) + sum(remaining_f_loss_value_batch)) / cfg.NUM_DISTRIBUTION + \
mu_2moment_loss_value_batch + 0.5 * \
miu_i.pow(2).sum(dim=1).mean().item()
w2_loss_value_batch *= 2
# miu_i.pow(2).sum(dim=1).mean().item() is already the mean of all distributions
##### Calculate all epoch loss ###############
w2_loss_value_epoch += w2_loss_value_batch
g_OT_loss_value_epoch = [
a + b for a,
b in zip(
g_OT_loss_value_epoch,
g_OT_loss_value_batch)]
g_constraints_loss_value_epoch += g_constraints_loss_value_batch
remaining_f_loss_value_epoch = [
a + b for a,
b in zip(
remaining_f_loss_value_epoch,
remaining_f_loss_value_batch)]
mu_2moment_loss_value_epoch += mu_2moment_loss_value_batch
if batch_idx % cfg.log_interval == 0:
logging.info('Train_Epoch: {} [{}/{} ({:.0f}%)] avg_dstb_g_OT_loss: {:.4f} avg_dstb_remaining_f_loss: {:.4f} mu_2moment_loss: {:.4f} g_constraint_loss: {:.4f} W2_loss: {:.4f} '.format(
epoch,
batch_idx * len(real_data),
len(train_loader.dataset),
100. * batch_idx / len(train_loader),
sum(g_OT_loss_value_batch) / cfg.NUM_DISTRIBUTION,
sum(remaining_f_loss_value_batch) / cfg.NUM_DISTRIBUTION,
mu_2moment_loss_value_batch,
g_constraints_loss_value_batch,
w2_loss_value_batch
))
w2_loss_value_epoch /= len(train_loader)
g_OT_loss_value_epoch[:] = [
item / len(train_loader) for item in g_OT_loss_value_epoch]
g_constraints_loss_value_epoch /= len(train_loader)
remaining_f_loss_value_epoch[:] = [
item / len(train_loader) for item in remaining_f_loss_value_epoch]
mu_2moment_loss_value_epoch /= len(train_loader)
results.add(epoch=epoch,
w2_loss_train_samples=w2_loss_value_epoch,
g_OT_train_loss=g_OT_loss_value_epoch,
g_constraints_train_loss=g_constraints_loss_value_epoch,
remaining_f_train_loss=remaining_f_loss_value_epoch,
mu_2moment_train_loss=mu_2moment_loss_value_epoch
)
results.save()
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Real Training Process
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
for epoch in range(1, cfg.epochs + 1):
train(epoch)
if cfg.schedule_learning_rate:
if epoch % cfg.lr_schedule_per_epoch == 0:
for i in range(cfg.NUM_DISTRIBUTION):
optimizer_f[i].param_groups[0]['lr'] *= cfg.lr_schedule_scale
optimizer_g[i].param_groups[0]['lr'] *= cfg.lr_schedule_scale
optimizer_h.param_groups[0]['lr'] *= cfg.lr_schedule_scale
if epoch % 1 == 0:
LLU.dump_nn(generator_h, convex_f, convex_g, epoch, model_save_path)