Model | Size | Augmentation | Epoch | Top 1 | Top 5 | Time | Code | Log |
---|---|---|---|---|---|---|---|---|
ResNet_vd-50 | 160 | AutoAugment | 200 | 78.99 | 94.33 | 232.4 | 98 | 1 2 |
ResNet_vd-50 | 160 | RandAugment | 200 | 78.89 | 94.08 | 218.1 | 99 | 1 2 |
ResNet_vd-50 | 160 | RA-AA | 200 | 79.01 | 94.35 | 249.1 | 100 | 1 2 |
ResNet_vd-50 | 160 | TrivalAugment | 200 | 79.26 | 94.17 | 213.1 | 109 | 1 2 3 |
- Reference papers:
- RA-AA randomly switches between AutoAugment and RandAugment for each sample.
- Note that TrivalAugment may not work well when using stronger models or combined with other data augmentation and regularization. See Assemble for more details.