-
Notifications
You must be signed in to change notification settings - Fork 9
/
run_fast_experiments.py
211 lines (170 loc) · 7.92 KB
/
run_fast_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""Main file to run for training and evaluating the models.
"""
import sys
sys.path.append('~/Codes/GoogleLM1b/')
import tensorflow as tf
import numpy as np
import os
import pickle
from ExplainBrain import ExplainBrain
from data_readers.harrypotter_data import HarryPotterReader
from util.misc import get_dists, compute_dist_of_dists
from util.plotting import plot
from voxel_preprocessing.select_voxels import VarianceFeatureSelection
import tensorflow as tf
import numpy as np
import os
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer('subject_id', 1, 'subject id')
tf.flags.DEFINE_integer('fold_id', 0, 'fold id')
tf.flags.DEFINE_list('delays',[-6,-4,-2,0] , 'delay list')
tf.flags.DEFINE_boolean('cross_delay', False, 'try different train and test delays')
tf.flags.DEFINE_float('alpha', 1, 'alpha')
tf.flags.DEFINE_string('embedding_dir', 'Data/word_embeddings/glove.6B/glove.6B.300d.txt', 'path to the file containing the embeddings')
tf.flags.DEFINE_string('brain_data_dir', 'Data/harrypotter/', 'Brain Data Dir')
tf.flags.DEFINE_string('root', '/Users/samiraabnar/Codes/', 'general path root')
tf.flags.DEFINE_enum('text_encoder', 'glove',
['glove','elmo', 'tf_token' ,'universal_large', 'google_lm'], 'which encoder to use')
tf.flags.DEFINE_string('embedding_type', 'lstm_outputs1', 'ELMO: word_emb, lstm_outputs1, lstm_outputs2 ')
tf.flags.DEFINE_string('context_mode', 'none', 'type of context (sentence, block, none)')
tf.flags.DEFINE_integer('past_window', 3, 'window size to the past')
tf.flags.DEFINE_integer('future_window', 0, 'window size to the future')
tf.flags.DEFINE_boolean('only_past', True, 'window size to the future')
tf.flags.DEFINE_boolean('save_data', True ,'save data flag')
tf.flags.DEFINE_boolean('load_data', True ,'load data flag')
tf.flags.DEFINE_boolean('save_encoded_stimuli', True, 'save encoded stimuli')
tf.flags.DEFINE_boolean('load_encoded_stimuli', True, 'load encoded stimuli')
tf.flags.DEFINE_boolean('save_models', True ,'save models flag')
tf.flags.DEFINE_string("param_set", None, "which param set to use")
tf.flags.DEFINE_string("emb_save_dir",'bridge_models/embeddings/', 'where to save embeddings')
def compare_brains_in_regions(brain_regions, regions_to_voxels):
for region_name, voxels in regions_to_voxels[i].items():
if region_name in best_brain_regions:
if region_name not in brain_regions:
brain_regions[region_name] = []
voxels = [v for v in voxels if v in brain_fs[i].get_selected_indexes()]
brain_regions[region_name].append(brains[-1][:, voxels])
for region_name in brain_regions:
if min(map(len, brain_regions[region_name])) > 0:
x_brain, C_brain = get_dists(brain_regions[region_name])
klz_brain, labels_brain = compute_dist_of_dists(x_brain, C_brain, brain_labels)
print(region_name, '\t', np.mean(klz_brain), '\t', np.std(klz_brain))
plot(klz_brain, labels_brain)
if __name__ == '__main__':
hparams = FLAGS
print("roots", hparams.root)
hparams.brain_data_dir = os.path.join(hparams.root, hparams.brain_data_dir)
hparams.emb_save_dir = os.path.join(hparams.root, hparams.emb_save_dir)
saving_dir = os.path.join(hparams.root, hparams.emb_save_dir,hparams.text_encoder +"_"+ hparams.embedding_type +"_"+ hparams.context_mode
+ "_" + str(hparams.past_window) +"-"+ str(hparams.future_window) + "_onlypast-" + str(hparams.only_past))
print("brain data dir: ", hparams.brain_data_dir)
print("saving dir: ", saving_dir)
brain_data_reader = HarryPotterReader(data_dir=hparams.brain_data_dir)
delay = 0
blocks = [1,2,3,4]
voxel_to_regions = {}
regions_to_voxels = {}
brain_fs = {}
for subject in [1,2,3,4,5,6,7,8]:
voxel_to_regions[subject], regions_to_voxels[subject] = brain_data_reader.get_voxel_to_region_mapping(subject_id=subject)
brain_fs[subject] = VarianceFeatureSelection()
best_brain_regions = ['Postcentral_L',
'Temporal_Inf_R',
'Cerebelum_Crus1_L',
'Fusiform_R',
'Temporal_Pole_Mid_L',
'Pallidum_L',
'Temporal_Mid_R',
'Temporal_Pole_Sup_L',
'Putamen_R',
'ParaHippocampal_L',
'Hippocampus_R',
'Amygdala_L',
'Postcentral_R',
'Thalamus_R',
'Precentral_R',
'Parietal_Sup_L' ]
embeddings = {}
labels = {}
encoder_types = ['google_lm', 'elmo','universal_large', 'glove', 'tf_token']
embedding_types = {
'universal_large': ['none'],
'google_lm': ['lstm_0', 'lstm_1'],
'glove': ['none'],
'tf_token': ['none'],
'elmo': ['word_emb','lstm_outputs1','lstm_outputs2', 'elmo']
}
for encoder_type in encoder_types:
for embedding_type in embedding_types[encoder_type]:
embedding_key = encoder_type +"_"+embedding_type
embeddings[embedding_key] = []
labels[embedding_key] = []
for context_size in np.arange(7):
embeddings[embedding_key].append([])
a = pickle.load(
open(os.path.join(hparams.emb_save_dir,
encoder_type+'_'+embedding_type+'_sentence_' + str(context_size) + '-0_onlypast-True'),
'rb'))
for b in blocks:
print(a['start_steps'][b],a['end_steps'][b])
embeddings[embedding_key][-1].extend(list(a['encoded_stimuli'][b][a['start_steps'][b]:a['end_steps'][b]]))
embeddings[embedding_key][-1] = np.asarray(embeddings[embedding_key][-1])
print(embedding_key)
print(embeddings[embedding_key][-1].shape)
labels[embedding_key].append(embedding_key+'_context_' + str(context_size))
all_embeddings = []
all_labels = []
for key in embeddings.keys():
all_embeddings += embeddings[key]
all_labels += labels[key]
brain_regions = []
brain_regions_labels = []
#Load Brains
brains = []
brain_labels = []
for i in np.arange(1, 9):
brains.append([])
a = pickle.load(open(os.path.join(hparams.emb_save_dir,str(i) + '_Brain'),
'rb'))
for b in blocks:
brains[-1].extend(a['brain_activations'][b][11+delay:-3])
brains[-1] = np.asarray(brains[-1])
brain_fs[i].fit(brains[-1])
original_selected_voxels = brain_fs[i].get_selected_indexes()
print(len(original_selected_voxels))
for region_name, voxels in regions_to_voxels[i].items():
if region_name in best_brain_regions:
voxels = [v for v in voxels if v in original_selected_voxels]
brain_regions.append(brains[-1][:, voxels])
brain_regions_labels.append(['subject_'+str(i)+region_name])
selected_voxels = [v for v in original_selected_voxels if voxel_to_regions[i][v] in best_brain_regions]
brains[-1] = brains[-1][:, selected_voxels]
brain_labels.append('brain_' + str(i))
print(brains[-1].shape)
#x, C = get_dists(brains + all_embeddings)
#klz, prz, labels_ = compute_dist_of_dists(x, C, brain_labels + all_labels)
#plot(prz, brain_regions_labels)
#klz = np.asarray(klz)
#print(klz.shape)
#print(brain_regions_labels)
x, C = get_dists(brain_regions)
klz, prz, labels_ = compute_dist_of_dists(x, C, brain_regions_labels)
region_sim_dic = {}
for region in best_brain_regions:
region_sim_dic[region] = []
for i in np.arange(len(brain_regions_labels)):
if brain_regions_labels[i].endswith(region):
for j in np.arange(len(brain_regions_labels)):
region_sim_dic[region].append(klz[i][j])
for key in region_sim_dic:
print(key," ", np.mean(region_sim_dic[key]), len(region_sim_dic[key]))
#import csv
# with open('whole_selected_klz_'+str(delay)+'.csv', 'w') as f:
# writer = csv.writer(f)
# writer.writerows(klz)
#
# with open('whole_selected_prz_'+str(delay)+'.csv', 'w') as f:
# writer = csv.writer(f)
# writer.writerows(prz)
#
#Get brain regions: