-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNTT.cpp
58 lines (54 loc) · 1.76 KB
/
NTT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
const int mod = 998244353; // 119 * 2^23 + 1
const int root = powM(3,119,mod); // (primitive root)^(odd part in mod-1)
const int root_1 = powM(root,mod-2,mod); // inverse of root
const int root_pw = 1 << 23;
const int mod = 7340033; // 7 * 2^20 + 1
const int root = powM(5,7,mod); // (primitive root)^(odd part in mod-1)
const int root_1 = powM(root,mod-2,mod); // inverse of root
const int root_pw = 1 << 20;
long long inverse(long long x, int mod) {
long long res = 1;
int e = mod - 2;
while (e) {
if (e & 1)res = res * x % mod;
x = x * x % mod,e >>= 1;
}
return res;
}
void fft(vector<int> & a, bool invert) {
int n = a.size();
for (int i = 1, j = 0; i < n; i++) {
int bit = n >> 1;
for (; j & bit; bit >>= 1)j ^= bit;
j ^= bit;
if (i < j)swap(a[i], a[j]);
}
for (int len = 2; len <= n; len <<= 1) {
int wlen = invert ? root_1 : root;
for (int i = len; i < root_pw; i <<= 1)wlen = (int)(1LL * wlen * wlen % mod);
for (int i = 0; i < n; i += len) {
int w = 1;
for (int j = 0; j < len / 2; j++) {
int u = a[i+j], v = (int)(1LL * a[i+j+len/2] * w % mod);
a[i+j] = u + v < mod ? u + v : u + v - mod;
a[i+j+len/2] = u - v >= 0 ? u - v : u - v + mod;
w = (int)(1LL * w * wlen % mod);
}
}
}
if (invert) {
int n_1 = inverse(1ll*n, mod);
assert((n_1*1LL* n )% mod == 1);
for (int & x : a)x = (int)(1LL * x * n_1 % mod);
}
}
vector<int> multiply(vector<int> const& a, vector<int> const& b) {
vector<int> fa(a.begin(), a.end()), fb(b.begin(), b.end());
int n = 1;
while (n < a.size() + b.size()) n <<= 1;
fa.resize(n),fb.resize(n);
fft(fa, false),fft(fb, false);
for (int i = 0; i < n; i++)fa[i] = (int)(1LL * fa[i] * fb[i] % mod);
fft(fa, true);
return fa;
}