-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcantilever_beam.m
47 lines (31 loc) · 1.05 KB
/
cantilever_beam.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
%% Title
% Calculations of cantilever beam under vibration
% Ref:
% Repetto, C. & Roatta, A. & Welti, Reinaldo. (2012). Forced vibrations of a cantilever beam. European Journal of Physics - EUR J PHYS. 33. 1187-1195. 10.1088/0143-0807/33/5/1187.
%% Defining the variables
clc
clear
E=200e9; % Modullus of elasticity (Pa)
rho=8220; % Density (kg/m^3)
b=3e-3; % Beam width (m)
h=0.508e-3; % Beam thickness (m)
S=b*h; % Cross section (m^2)
I=b*h^3/12; % Second moment of inertia of cross section wrt longitudinal axis (m^4)
L=4.8e-3; % Beam length (m)
gamma=0.0001; % Damping coefficient (1/s)
z0=10e-3; % Amplitude of excitation (m)
% w=1000:30000; % Frequency (Hz)
%% Natural Frequencies
[wn1,wn2]=BeamNatFreq(h,L,E,rho)
figure
plot(L,wn1/1000,'*')
grid on
%% Stress and Displacement Distributions
figure
plot(15:0.001:20,ResAmp(15000:20000,z0,gamma,L,wn1,rho,S,E,I))
% Maximumm amplitude at resonance
A_res=MaxResAmp(z0,gamma,L,wn1,rho,S,E,I);
%
figure
plot(wn1/1000,A_res/1000,'o')
grid on