-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOnlineEKRLS.m
59 lines (51 loc) · 1.97 KB
/
OnlineEKRLS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function [preSignal,Gp,erle] = OnlineEKRLS(trainInput,trainOutput,lamda,delta)
[Np,L] = size(trainInput);
d_sum = 0;
deltad_sum = 0;
% Filter Parameters
laminv = 1/lamda;
q = 3.8;
beta = 2.2;
alpha=1;
% Filter Initialization
predictorPara = zeros(Np,1); % Initial value of predictor parameter
A = alpha*eye(Np);
P = delta*eye(Np); % inverse correlation matrix
%% Do Onling Learning
fprintf('## Do online learning, Please wait... \n');
%>>>>>>>>>>>> Set the waitbar - Initialization <<<<<<<<<<<<<<<<<<
wb1 = waitbar(0, 'RLS Online Training in Progress...');
for K = 1:L
%>>>>>>>>>>>>>>>>> Display Waitbar <<<<<<<<<<<<<<<<<<<<<<
waitbar(K/L,wb1)
set(wb1,'name',['Progress = ' sprintf('%2.1f',K/L*100) '%']);
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
% Acquire chunk of data
currentPreSequence = trainInput(:,K);
% Error signal equation
currentPreSample = predictorPara(:,K)'*currentPreSequence;
preSignal(K,1) = currentPreSample;
predictError(K,1) = trainOutput(K,1)-currentPreSample;
% Parameters for efficiency
Pi = P*currentPreSequence;
% Filter gain vector update
gain = A*(Pi./(beta+lamda+currentPreSequence'*Pi));
% Inverse correlation matrix update
P = A*((P-gain*currentPreSequence'*P)*laminv)*A' + beta*q*eye(Np);
% Filter coefficients adaption
predictorPara(:,K+1) = A*predictorPara(:,K) + gain*predictError(K);
d_sum = d_sum + trainOutput(K,1)^2;
deltad_sum = deltad_sum + (trainOutput(K,1)- preSignal(K,1))^2;
erle(K) = 10*log10((d_sum+eps)/(deltad_sum+eps));
end
close(wb1);
plotEnable = 1;
if plotEnable == 1
figure;
plot(trainOutput,'b') ; hold on; grid on;
plot(preSignal,'r');
plot(predictError,'g');
title('training: teacher sequence (blue) vs predicted sequence (red)') ;
end
%% Prediction gain
Gp = 10*log10((sum(trainOutput.^2)/(sum(predictError.^2))+0.0000001));