-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path4.wikipedia.py
179 lines (140 loc) · 5.11 KB
/
4.wikipedia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
# Given a set of corpus.txt, generate vectors based on Wikipedia topics
__author__ = "Vanessa Sochat"
__copyright__ = "Copyright 2022, Vanessa Sochat"
__license__ = "MPL 2.0"
from rse.utils.file import recursive_find, write_file, read_file
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from gensim.corpora.wikicorpus import WikiCorpus
from scipy.spatial.distance import pdist, squareform
from sklearn import datasets, preprocessing, manifold
import multiprocessing
from pprint import pprint
import pandas
import tempfile
import shutil
import argparse
import re
import sys
import io
import os
def load_vectors(fname):
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
n, d = map(int, fin.readline().split())
data = {}
for line in fin:
tokens = line.rstrip().split(' ')
data[tokens[0]] = map(float, tokens[1:])
return data
def get_parser():
parser = argparse.ArgumentParser(
description="Research Software Encyclopedia Vectorizer",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"data_dir",
help="Directory with UID subfolders",
default=os.path.join(os.getcwd(), "data"),
)
return parser
class SoftwareCorpus:
def __init__(self, datadir):
self.datadir = datadir
def iter_text(self):
for filename in recursive_find(self.datadir, "corpus.txt"):
uid = os.path.dirname(filename.replace(self.datadir, "").strip(os.sep))
yield uid, read_file(filename, readlines=False).split()
def __iter__(self):
for uid, words in self.iter_text():
print("Training with %s" % uid)
yield TaggedDocument(words, [uid])
class WikipediaCorpus(object):
def __init__(self, wiki):
self.wiki = wiki
self.wiki.metadata = True
def __iter__(self):
for content, (page_id, title) in self.wiki.get_texts():
yield TaggedDocument([c for c in content], [title])
def main():
parser = get_parser()
args, extra = parser.parse_known_args()
# Make sure output directory exists
datadir = os.path.abspath(args.data_dir)
if not os.path.exists(datadir):
sys.exit("%s does not exist!" % datadir)
wiki_file = "wiki.en.vec"
if not os.path.exists(wiki_file):
sys.exit('%s does not exist, see instructions in README to download and extract.' % wiki_file)
vectors = load_vectors(wiki_file)
import IPython
IPython.embed()
sys.exit()
pre_model = 'model.pre.doc2vec'
pickled_docs = 'documents.pkl'
if os.path.exists(pre_model) and os.path.exists(pickled_docs):
print('LOAD MODELS')
import IPython
IPython.embed()
sys.exit()
else:
corpus = SoftwareCorpus(datadir)
wikifile = "enwiki-latest-pages-articles.xml.bz2"
if not os.path.exists(wikifile):
sys.exit("You need to download %s first, see README in repository!" % wikifile)
wiki = WikiCorpus(wikifile)
documents = WikipediaCorpus(wiki)
with open(pickle_docs, 'wb') as f:
pickle.dump(documents, f)
# Preprocessing (this also takes a long time)!
pre = Doc2Vec(min_count=0)
pre.scan_vocab(documents)
pre.save(pre_model)
# Calculate the optimal min_count parameter to calculate the vocabulary size
# NOTE pre didn't have scale_vocab method so we will use 19/20
cores = multiprocessing.cpu_count()
models = [
# PV-DBOW
Doc2Vec(
dm=0, dbow_words=1, vector_size=200, window=8, min_count=19, epochs=10, workers=cores
),
# PV-DM w/average
Doc2Vec(
dm=1, dm_mean=1, vector_size=200, window=8, min_count=19, epochs=10, workers=cores
),
]
import IPython
IPython.embed()
sys.exit(0)
models[0].build_vocab(documents)
print(str(models[0]))
models[1].reset_from(models[0])
print(str(models[1]))
Doc2Vec(dbow + w, d200, hs, w8, mc19, t8)
# Train doc2vec on wikipedia
for model in models:
model.train(documents)
# 40 epochs means we do it 40 times
model = Doc2Vec(corpus, vector_size=50, min_count=100, workers=4, epochs=40)
# Save the model if we need again
model.save("model.doc2vec")
# Create a vector for each document
# UIDS as id for each row, vectors across columns
df = pandas.DataFrame(columns=range(50))
print("Generating vector matrix for documents...")
for uid, words in corpus.iter_text():
df.loc[uid] = model.infer_vector(words)
# Save dataframe to file
df.to_csv("vectors.csv")
# Create a distance matrix
distance = pandas.DataFrame(
squareform(pdist(df)), index=list(df.index), columns=list(df.index)
)
distance.to_csv("software-distances.csv")
# Make the tsne!
fit = manifold.TSNE(n_components=2)
embedding = fit.fit_transform(distance)
emb = pandas.DataFrame(embedding, index=distance.index, columns=["x", "y"])
emb.index.name = "name"
emb.to_csv(os.path.join("docs", "software-embeddings.csv"))
if __name__ == "__main__":
main()