|
1 | 1 | from __future__ import print_function, division
|
2 | 2 |
|
3 |
| -from sympy.core import Basic, Dict, Symbol, Tuple |
| 3 | +from sympy.core import S, Basic, Dict, Symbol, Tuple |
4 | 4 | from sympy.core.compatibility import xrange, iterable
|
5 | 5 | from sympy.sets import Set, FiniteSet, EmptySet
|
6 | 6 |
|
@@ -722,8 +722,8 @@ def __new__(cls, *args):
|
722 | 722 |
|
723 | 723 | for morphism in conclusions_arg:
|
724 | 724 | # Check that no new objects appear in conclusions.
|
725 |
| - if (morphism.domain in objects) and \ |
726 |
| - (morphism.codomain in objects): |
| 725 | + if ((objects.contains(morphism.domain) == S.true) and |
| 726 | + (objects.contains(morphism.codomain) == S.true)): |
727 | 727 | # No need to add identities and recurse
|
728 | 728 | # composites this time.
|
729 | 729 | Diagram._add_morphism_closure(
|
@@ -920,12 +920,14 @@ def subdiagram_from_objects(self, objects):
|
920 | 920 |
|
921 | 921 | new_premises = {}
|
922 | 922 | for morphism, props in self.premises.items():
|
923 |
| - if (morphism.domain in objects) and (morphism.codomain in objects): |
| 923 | + if ((objects.contains(morphism.domain) == S.true) and |
| 924 | + (objects.contains(morphism.codomain) == S.true)): |
924 | 925 | new_premises[morphism] = props
|
925 | 926 |
|
926 | 927 | new_conclusions = {}
|
927 | 928 | for morphism, props in self.conclusions.items():
|
928 |
| - if (morphism.domain in objects) and (morphism.codomain in objects): |
| 929 | + if ((objects.contains(morphism.domain) == S.true) and |
| 930 | + (objects.contains(morphism.codomain) == S.true)): |
929 | 931 | new_conclusions[morphism] = props
|
930 | 932 |
|
931 | 933 | return Diagram(new_premises, new_conclusions)
|
0 commit comments