-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpowerspectrum.py
301 lines (225 loc) · 13.1 KB
/
powerspectrum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import numpy
import powerbox
import matplotlib
from matplotlib import pyplot
import matplotlib.colors as colors
from plottools import colorbar
from generaltools import symlog_bounds
from radiotelescope import beam_width
"""
This file is going to contain all relevant power spectrum functions, i.e data gridding, (frequency tapering), frequency
fft, angular averaging, plotting
"""
class PowerSpectrumData:
def __init__(self, visibility_data = None, u_coordinate = None, v_coordinate = None, frequency_coordinate = None):
self.data_raw = visibility_data
self.u_raw = u_coordinate
self.v_raw = v_coordinate
self.f_raw = frequency_coordinate
self.data_regrid = None
self.u_regrid = None
self.v_regrid = None
self.f_regrid = None
self.eta = None
return
def append_frequency_slice(self, new_data, new_u, new_v, new_frequency):
if self.data is None:
self.data = new_data
self.u = new_u
self.v = new_v
self.f = numpy.array([new_frequency])
else:
current_data = self.data
current_u = self.u
current_v = self.v
current_f = self.f
self.data = numpy.vstack((current_data, new_data))
self.u = numpy.vstack((current_u, new_u))
self.v = numpy.vstack((current_v, new_v))
self.f = numpy.vstack((current_f, numpy.array([new_frequency])))
return
def regrid_data(self, keep_raw = True):
return
def serialised_gridding():
return
def parallelised_gridding():
return
def regrid_visibilities(measured_visibilities, baseline_u, baseline_v, u_grid):
u_shifts = numpy.diff(u_grid) / 2.
u_bin_edges = numpy.concatenate((numpy.array([u_grid[0] - u_shifts[0]]), u_grid[1:] - u_shifts,
numpy.array([u_grid[-1] + u_shifts[-1]])))
weights_regrid, u_bins, v__bins = numpy.histogram2d(baseline_u,
baseline_v,
bins=(u_bin_edges, u_bin_edges))
real_regrid, u_bins, v__bins = numpy.histogram2d(baseline_u,
baseline_v,
bins=(u_bin_edges, u_bin_edges),
weights=
numpy.real(measured_visibilities))
imag_regrid, u_bins, v__bins = numpy.histogram2d(baseline_u,
baseline_v,
bins=(u_bin_edges, u_bin_edges),
weights=
numpy.imag(measured_visibilities))
regridded_visibilities = real_regrid + 1j*imag_regrid
normed_regridded_visibilities = numpy.nan_to_num(regridded_visibilities/weights_regrid)
return normed_regridded_visibilities, weights_regrid
def regrid_visibilities_gaussian(measured_visibilities, baseline_u, baseline_v, u_grid, frequency):
u_shifts = numpy.diff(u_grid) / 2.
u_bin_edges = numpy.concatenate((numpy.array([u_grid[0] - u_shifts[0]]), u_grid[1:] - u_shifts,
numpy.array([u_grid[-1] + u_shifts[-1]])))
gridded_data = numpy.zeros((len(u_grid), len(u_grid)), dtype = complex)
gridded_weights = numpy.zeros((len(u_grid), len(u_grid)))
#calculate the kernel
kernel_pixel_size = 51
if kernel_pixel_size % 2 == 0:
dimension = kernel_pixel_size/2
else:
dimension = (kernel_pixel_size + 1)/2
grid_midpoint = int(len(u_grid)/2)
kernel_width = beam_width(frequency)
print(kernel_width)
kernel_grid = u_grid[int(grid_midpoint-dimension):int(grid_midpoint+dimension+1)]
uu, vv = numpy.meshgrid(kernel_grid, kernel_grid)
kernel = (numpy.exp(-kernel_width**2*(uu ** 2. + vv ** 2.)).flatten())
kernel_coordinates = numpy.arange(-dimension, dimension + 1, 1, dtype = int)
kernel_mapx, kernel_mapy = numpy.meshgrid(kernel_coordinates, kernel_coordinates)
for i in range(len(measured_visibilities)):
u_index = numpy.digitize(numpy.array(baseline_u[i]), u_bin_edges)
v_index = numpy.digitize(numpy.array(baseline_v[i]), u_bin_edges)
kernel_x = kernel_mapx.flatten() + u_index
kernel_y = kernel_mapy.flatten() + v_index
#filter indices which are beyond array range
indices = numpy.where((kernel_x > 0) & (kernel_x < len(u_grid)) & (kernel_y > 0) & (kernel_y < len(u_grid)))[0]
print(indices)
gridded_data[kernel_x[indices], kernel_y[indices]] += measured_visibilities[i]*kernel[indices]
gridded_weights[kernel_x[indices], kernel_y[indices]] += kernel[indices]
normed_gridded_data = numpy.nan_to_num(gridded_data/gridded_weights)
return normed_gridded_data, gridded_weights
def get_power_spectrum(frequency_range, radio_telescope, ideal_measured_visibilities, broken_measured_visibilities,
faulty_tile, plot_file_name, gaussian_kernel = False, verbose = False):
baseline_table = radio_telescope.baseline_table
# Determine maximum resolution
max_frequency = frequency_range[-1]
max_u = numpy.max(numpy.abs(baseline_table.u(max_frequency)))
max_v = numpy.max(numpy.abs(baseline_table.v(max_frequency)))
max_b = max(max_u, max_v)
re_gridding_resolution = 0.5 # lambda
n_regridded_cells = int(numpy.ceil(2 * max_b / re_gridding_resolution))
#ensure gridding cells are always odd numbered
if n_regridded_cells % 2 == 0:
n_regridded_cells += 1
else:
pass
regridded_uv = numpy.linspace(-max_b, max_b, n_regridded_cells)
if verbose:
print("Gridding data for Power Spectrum Estimation")
#Create empty_uvf_cubes:
ideal_regridded_cube = numpy.zeros((n_regridded_cells,n_regridded_cells, len(frequency_range)), dtype = complex)
broken_regridded_cube= ideal_regridded_cube.copy()
ideal_regridded_weights = numpy.zeros((n_regridded_cells,n_regridded_cells, len(frequency_range)))
broken_regridded_weights= ideal_regridded_weights.copy()
for frequency_index in range(len(frequency_range)):
if gaussian_kernel:
ideal_regridded_cube[..., frequency_index], ideal_regridded_weights[
..., frequency_index] = regrid_visibilities_gaussian(
ideal_measured_visibilities[:, frequency_index], baseline_table.u(frequency_range[frequency_index]),
baseline_table.v(frequency_range[frequency_index]), regridded_uv, frequency_range[frequency_index])
broken_regridded_cube[..., frequency_index], broken_regridded_weights[
..., frequency_index] = regrid_visibilities_gaussian(
broken_measured_visibilities[:, frequency_index], baseline_table.u(frequency_range[frequency_index]),
baseline_table.v(frequency_range[frequency_index]), regridded_uv, frequency_range[frequency_index])
else:
ideal_regridded_cube[..., frequency_index], ideal_regridded_weights[..., frequency_index] = regrid_visibilities(
ideal_measured_visibilities[:, frequency_index], baseline_table.u(frequency_range[frequency_index]),
baseline_table.v(frequency_range[frequency_index]), regridded_uv)
broken_regridded_cube[..., frequency_index], broken_regridded_weights[..., frequency_index] = regrid_visibilities(
broken_measured_visibilities[:, frequency_index], baseline_table.u(frequency_range[frequency_index]),
baseline_table.v(frequency_range[frequency_index]), regridded_uv)
pyplot.imshow(numpy.abs(ideal_regridded_weights[...,frequency_index]))
pyplot.savefig("blaah1.pdf")
# visibilities have now been re-gridded
if verbose:
print("Taking Fourier Transform over frequency and averaging")
ideal_shifted = numpy.fft.ifftshift(ideal_regridded_cube, axes=2)
broken_shifted = numpy.fft.ifftshift(broken_regridded_cube, axes=2)
ideal_uvn, eta_coords = powerbox.dft.fft(ideal_shifted,
L=numpy.max(frequency_range) - numpy.min(frequency_range), axes=(2,))
broken_uvn, eta_coords = powerbox.dft.fft(broken_shifted,
L=numpy.max(frequency_range) - numpy.min(frequency_range), axes=(2,))
ideal_PS, uv_bins = powerbox.tools.angular_average_nd(numpy.abs(ideal_uvn) ** 2,
coords=[regridded_uv, regridded_uv,
eta_coords], bins=75,
n=2, weights=numpy.sum(ideal_regridded_weights, axis=2))
broken_PS, uv_bins = powerbox.tools.angular_average_nd(numpy.abs(broken_uvn) ** 2,
coords=[regridded_uv, regridded_uv,
eta_coords], bins=75,
n=2, weights=numpy.sum(broken_regridded_weights, axis=2))
diff_PS, uv_bins = powerbox.tools.angular_average_nd(numpy.abs(broken_uvn - ideal_uvn) ** 2,
coords=[regridded_uv, regridded_uv,
eta_coords], bins=75,
n=2, weights=numpy.sum(broken_regridded_weights, axis=2))
#diff_PS = (broken_PS - ideal_PS)/ideal_PS
selection = int(len(eta_coords[0]) / 2) + 1
if verbose:
print("Making 2D PS Plots")
power_spectrum_plot(uv_bins, eta_coords[0, selection:], ideal_PS[:, selection:], broken_PS[:, selection:],
diff_PS[:, selection:],plot_file_name, faulty_tile)
return
def power_spectrum_plot(uv_bins, eta_coords, ideal_PS, broken_PS, diff_PS, plot_file_name, faulty_tile = -1, ):
fontsize = 25
tickfontsize = 20
figure = pyplot.figure(figsize=(30, 10))
ideal_axes = figure.add_subplot(131)
broken_axes = figure.add_subplot(132)
difference_axes = figure.add_subplot(133)
ideal_plot = ideal_axes.pcolor(uv_bins, eta_coords, numpy.real(ideal_PS.T),
cmap='Spectral_r',
norm=colors.LogNorm(vmin=numpy.nanmin(numpy.real(ideal_PS.T)),
vmax=numpy.nanmax(numpy.real(ideal_PS.T))))
broken_plot = broken_axes.pcolor(uv_bins, eta_coords, numpy.real(broken_PS.T),
cmap='Spectral_r',
norm=colors.LogNorm(vmin=numpy.nanmin(numpy.real(broken_PS.T)),
vmax=numpy.nanmax(numpy.real(broken_PS.T))))
symlog_min, symlog_max, symlog_threshold, symlog_scale = symlog_bounds(numpy.real(diff_PS))
diff_plot = difference_axes.pcolor(uv_bins, eta_coords, numpy.real(diff_PS.T),
norm=colors.SymLogNorm(linthresh=10**-5, linscale=symlog_scale,
vmin=symlog_min, vmax=symlog_max), cmap='coolwarm')
ideal_axes.set_xscale("log")
ideal_axes.set_yscale("log")
broken_axes.set_xscale("log")
broken_axes.set_yscale("log")
difference_axes.set_xscale("log")
difference_axes.set_yscale("log")
x_labeling = r"$ k_{\perp} \, [\mathrm{h}\,\mathrm{Mpc}^{-1}]$"
y_labeling = r"$k_{\parallel} $"
x_labeling = r"$ |u |$"
y_labeling = r"$ \eta $"
ideal_axes.set_xlabel(x_labeling, fontsize=fontsize )
broken_axes.set_xlabel(x_labeling, fontsize=fontsize )
difference_axes.set_xlabel(x_labeling, fontsize=fontsize)
ideal_axes.set_ylabel(y_labeling, fontsize=fontsize )
ideal_axes.tick_params(axis='both', which='major', labelsize=tickfontsize)
broken_axes.tick_params(axis='both', which='major', labelsize=tickfontsize)
difference_axes.tick_params(axis='both', which='major', labelsize=tickfontsize)
figure.suptitle(f"Tile {faulty_tile}")
ideal_axes.set_title("Ideal Array", fontsize = fontsize)
broken_axes.set_title("Broken Array", fontsize = fontsize)
difference_axes.set_title("(Ideal - Broken)/Ideal", fontsize = fontsize)
# ideal_axes.set_xlim(10**-2.5, 10**-0.5)
# broken_axes.set_xlim(10**-2.5, 10**-0.5)
# difference_axes.set_xlim(10**-2.5, 10**-0.5)
print(uv_bins)
ideal_axes.set_xlim(numpy.nanmin(uv_bins), 2*1e2)
broken_axes.set_xlim(numpy.nanmin(uv_bins), 2*1e2)
difference_axes.set_xlim(numpy.nanmin(uv_bins), 2*1e2)
ideal_cax = colorbar(ideal_plot)
broken_cax = colorbar(broken_plot)
diff_cax = colorbar(diff_plot)
diff_cax.set_label(r"$[Jy^2]$", fontsize=fontsize)
ideal_cax.ax.tick_params(axis='both', which='major', labelsize=tickfontsize)
broken_cax.tick_params(axis='both', which='major', labelsize=tickfontsize)
diff_cax.ax.tick_params(axis='both', which='major', labelsize=tickfontsize)
print(plot_file_name)
figure.savefig(plot_file_name)
return