forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compound.hh
299 lines (288 loc) · 10.8 KB
/
compound.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
* Copyright (C) 2015-present ScyllaDB
*/
/*
* SPDX-License-Identifier: AGPL-3.0-or-later
*/
#pragma once
#include "types/types.hh"
#include <algorithm>
#include <vector>
#include <span>
#include <ranges>
#include "utils/assert.hh"
#include "utils/serialization.hh"
#include <seastar/util/backtrace.hh>
enum class allow_prefixes { no, yes };
template<allow_prefixes AllowPrefixes = allow_prefixes::no>
class compound_type final {
private:
const std::vector<data_type> _types;
const bool _byte_order_equal;
const bool _byte_order_comparable;
const bool _is_reversed;
public:
static constexpr bool is_prefixable = AllowPrefixes == allow_prefixes::yes;
using prefix_type = compound_type<allow_prefixes::yes>;
using value_type = std::vector<bytes>;
using size_type = uint16_t;
compound_type(std::vector<data_type> types)
: _types(std::move(types))
, _byte_order_equal(std::all_of(_types.begin(), _types.end(), [] (const auto& t) {
return t->is_byte_order_equal();
}))
, _byte_order_comparable(false)
, _is_reversed(_types.size() == 1 && _types[0]->is_reversed())
{ }
compound_type(compound_type&&) = default;
auto const& types() const {
return _types;
}
bool is_singular() const {
return _types.size() == 1;
}
prefix_type as_prefix() {
return prefix_type(_types);
}
private:
/*
* Format:
* <len(value1)><value1><len(value2)><value2>...<len(value_n)><value_n>
*
*/
template<typename RangeOfSerializedComponents, FragmentedMutableView Out>
static void serialize_value(RangeOfSerializedComponents&& values, Out out) {
for (auto&& val : values) {
using val_type = std::remove_cvref_t<decltype(val)>;
if constexpr (FragmentedView<val_type>) {
SCYLLA_ASSERT(val.size_bytes() <= std::numeric_limits<size_type>::max());
write<size_type>(out, size_type(val.size_bytes()));
write_fragmented(out, val);
} else if constexpr (std::same_as<val_type, managed_bytes>) {
SCYLLA_ASSERT(val.size() <= std::numeric_limits<size_type>::max());
write<size_type>(out, size_type(val.size()));
write_fragmented(out, managed_bytes_view(val));
} else {
SCYLLA_ASSERT(val.size() <= std::numeric_limits<size_type>::max());
write<size_type>(out, size_type(val.size()));
write_fragmented(out, single_fragmented_view(val));
}
}
}
template <typename RangeOfSerializedComponents>
static size_t serialized_size(RangeOfSerializedComponents&& values) {
size_t len = 0;
for (auto&& val : values) {
using val_type = std::remove_cvref_t<decltype(val)>;
if constexpr (FragmentedView<val_type>) {
len += sizeof(size_type) + val.size_bytes();
} else {
len += sizeof(size_type) + val.size();
}
}
return len;
}
public:
managed_bytes serialize_single(const managed_bytes& v) const {
return serialize_value(std::ranges::subrange(&v, 1+&v));
}
managed_bytes serialize_single(const bytes& v) const {
return serialize_value(std::ranges::subrange(&v, 1+&v));
}
template<typename RangeOfSerializedComponents>
static managed_bytes serialize_value(RangeOfSerializedComponents&& values) {
auto size = serialized_size(values);
if (size > std::numeric_limits<size_type>::max()) {
throw std::runtime_error(format("Key size too large: {:d} > {:d}", size, std::numeric_limits<size_type>::max()));
}
managed_bytes b(managed_bytes::initialized_later(), size);
serialize_value(values, managed_bytes_mutable_view(b));
return b;
}
template<typename T>
static managed_bytes serialize_value(std::initializer_list<T> values) {
return serialize_value(std::span(values));
}
managed_bytes serialize_optionals(std::span<const bytes_opt> values) const {
return serialize_value(values | std::views::transform([] (const bytes_opt& bo) -> bytes_view {
if (!bo) {
throw std::logic_error("attempted to create key component from empty optional");
}
return *bo;
}));
}
managed_bytes serialize_optionals(std::span<const managed_bytes_opt> values) const {
return serialize_value(values | std::views::transform([] (const managed_bytes_opt& bo) -> managed_bytes_view {
if (!bo) {
throw std::logic_error("attempted to create key component from empty optional");
}
return managed_bytes_view(*bo);
}));
}
managed_bytes serialize_value_deep(const std::vector<data_value>& values) const {
// TODO: Optimize
std::vector<bytes> partial;
partial.reserve(values.size());
auto i = _types.begin();
for (auto&& component : values) {
SCYLLA_ASSERT(i != _types.end());
partial.push_back((*i++)->decompose(component));
}
return serialize_value(partial);
}
managed_bytes decompose_value(const value_type& values) const {
return serialize_value(values);
}
class iterator {
public:
using iterator_category = std::forward_iterator_tag;
using iterator_concept = std::forward_iterator_tag;
using value_type = const managed_bytes_view;
using difference_type = std::ptrdiff_t;
private:
managed_bytes_view _v;
managed_bytes_view _current;
size_t _remaining = 0;
private:
void read_current() {
_remaining = _v.size_bytes();
size_type len;
{
if (_v.empty()) {
return;
}
len = read_simple<size_type>(_v);
if (_v.size() < len) {
throw_with_backtrace<marshal_exception>(format("compound_type iterator - not enough bytes, expected {:d}, got {:d}", len, _v.size()));
}
}
_current = _v.prefix(len);
_v.remove_prefix(_current.size_bytes());
}
public:
struct end_iterator_tag {};
iterator(const managed_bytes_view& v) : _v(v) {
read_current();
}
iterator(end_iterator_tag, const managed_bytes_view& v) : _v() {}
iterator() {}
iterator& operator++() {
read_current();
return *this;
}
iterator operator++(int) {
iterator i(*this);
++(*this);
return i;
}
value_type operator*() const { return _current; }
bool operator==(const iterator& i) const { return _remaining == i._remaining; }
};
static iterator begin(managed_bytes_view v) {
return iterator(v);
}
static iterator end(managed_bytes_view v) {
return iterator(typename iterator::end_iterator_tag(), v);
}
static std::ranges::subrange<iterator> components(managed_bytes_view v) {
return std::ranges::subrange(begin(v), end(v));
}
value_type deserialize_value(managed_bytes_view v) const {
std::vector<bytes> result;
result.reserve(_types.size());
std::transform(begin(v), end(v), std::back_inserter(result), [] (auto&& v) {
return to_bytes(v);
});
return result;
}
bool less(managed_bytes_view b1, managed_bytes_view b2) const {
return with_linearized(b1, [&] (bytes_view bv1) {
return with_linearized(b2, [&] (bytes_view bv2) {
return less(bv1, bv2);
});
});
}
bool less(bytes_view b1, bytes_view b2) const {
return compare(b1, b2) < 0;
}
size_t hash(managed_bytes_view v) const{
return with_linearized(v, [&] (bytes_view v) {
return hash(v);
});
}
size_t hash(bytes_view v) const {
if (_byte_order_equal) {
return std::hash<bytes_view>()(v);
}
auto t = _types.begin();
size_t h = 0;
for (auto&& value : components(v)) {
h ^= (*t)->hash(value);
++t;
}
return h;
}
std::strong_ordering compare(managed_bytes_view b1, managed_bytes_view b2) const {
return with_linearized(b1, [&] (bytes_view bv1) {
return with_linearized(b2, [&] (bytes_view bv2) {
return compare(bv1, bv2);
});
});
}
std::strong_ordering compare(bytes_view b1, bytes_view b2) const {
if (_byte_order_comparable) {
if (_is_reversed) {
return compare_unsigned(b2, b1);
} else {
return compare_unsigned(b1, b2);
}
}
return lexicographical_tri_compare(_types.begin(), _types.end(),
begin(b1), end(b1), begin(b2), end(b2), [] (auto&& type, auto&& v1, auto&& v2) {
return type->compare(v1, v2);
});
}
// Returns true iff given prefix has no missing components
bool is_full(managed_bytes_view v) const {
SCYLLA_ASSERT(AllowPrefixes == allow_prefixes::yes);
return std::distance(begin(v), end(v)) == (ssize_t)_types.size();
}
bool is_empty(managed_bytes_view v) const {
return v.empty();
}
bool is_empty(const managed_bytes& v) const {
return v.empty();
}
bool is_empty(bytes_view v) const {
return begin(v) == end(v);
}
void validate(managed_bytes_view v) const {
std::vector<managed_bytes_view> values(begin(v), end(v));
if (AllowPrefixes == allow_prefixes::no && values.size() < _types.size()) {
throw marshal_exception(fmt::format("compound::validate(): non-prefixable compound cannot be a prefix"));
}
if (values.size() > _types.size()) {
throw marshal_exception(fmt::format("compound::validate(): cannot have more values than types, have {} values but only {} types",
values.size(), _types.size()));
}
for (size_t i = 0; i != values.size(); ++i) {
//FIXME: is it safe to assume internal serialization-format format?
_types[i]->validate(values[i]);
}
}
bool equal(managed_bytes_view v1, managed_bytes_view v2) const {
return with_linearized(v1, [&] (bytes_view bv1) {
return with_linearized(v2, [&] (bytes_view bv2) {
return equal(bv1, bv2);
});
});
}
bool equal(bytes_view v1, bytes_view v2) const {
if (_byte_order_equal) {
return compare_unsigned(v1, v2) == 0;
}
// FIXME: call equal() on each component
return compare(v1, v2) == 0;
}
};
using compound_prefix = compound_type<allow_prefixes::yes>;