forked from Lawouach/WebSocket-for-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
websocket.py
517 lines (424 loc) · 16.5 KB
/
websocket.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# -*- coding: utf-8 -*-
import logging
import socket
import ssl
import time
import threading
import types
try:
from OpenSSL.SSL import Error as pyOpenSSLError
except ImportError:
class pyOpenSSLError(Exception):
pass
from ws4py import WS_KEY, WS_VERSION
from ws4py.exc import HandshakeError, StreamClosed
from ws4py.streaming import Stream
from ws4py.messaging import Message, PingControlMessage,\
PongControlMessage
from ws4py.compat import basestring, unicode
DEFAULT_READING_SIZE = 2
logger = logging.getLogger('ws4py')
__all__ = ['WebSocket', 'EchoWebSocket', 'Heartbeat']
class Heartbeat(threading.Thread):
def __init__(self, websocket, frequency=2.0):
"""
Runs at a periodic interval specified by
`frequency` by sending an unsolicitated pong
message to the connected peer.
If the message fails to be sent and a socket
error is raised, we close the websocket
socket automatically, triggering the `closed`
handler.
"""
threading.Thread.__init__(self)
self.websocket = websocket
self.frequency = frequency
def __enter__(self):
if self.frequency:
self.start()
return self
def __exit__(self, exc_type, exc_value, exc_tb):
self.stop()
def stop(self):
self.running = False
def run(self):
self.running = True
while self.running:
time.sleep(self.frequency)
if self.websocket.terminated:
break
try:
self.websocket.send(PongControlMessage(data='beep'))
except socket.error:
logger.info("Heartbeat failed")
self.websocket.server_terminated = True
self.websocket.close_connection()
break
class WebSocket(object):
""" Represents a websocket endpoint and provides a high level interface to drive the endpoint. """
def __init__(self, sock, protocols=None, extensions=None, environ=None, heartbeat_freq=None):
""" The ``sock`` is an opened connection
resulting from the websocket handshake.
If ``protocols`` is provided, it is a list of protocols
negotiated during the handshake as is ``extensions``.
If ``environ`` is provided, it is a copy of the WSGI environ
dictionnary from the underlying WSGI server.
"""
self.stream = Stream(always_mask=False)
"""
Underlying websocket stream that performs the websocket
parsing to high level objects. By default this stream
never masks its messages. Clients using this class should
set the ``stream.always_mask`` fields to ``True``
and ``stream.expect_masking`` fields to ``False``.
"""
self.protocols = protocols
"""
List of protocols supported by this endpoint.
Unused for now.
"""
self.extensions = extensions
"""
List of extensions supported by this endpoint.
Unused for now.
"""
self.sock = sock
"""
Underlying connection.
"""
self._is_secure = hasattr(sock, '_ssl') or hasattr(sock, '_sslobj')
"""
Tell us if the socket is secure or not.
"""
self.client_terminated = False
"""
Indicates if the client has been marked as terminated.
"""
self.server_terminated = False
"""
Indicates if the server has been marked as terminated.
"""
self.reading_buffer_size = DEFAULT_READING_SIZE
"""
Current connection reading buffer size.
"""
self.environ = environ
"""
WSGI environ dictionary.
"""
self.heartbeat_freq = heartbeat_freq
"""
At which interval the heartbeat will be running.
Set this to `0` or `None` to disable it entirely.
"""
self._local_address = None
self._peer_address = None
@property
def local_address(self):
"""
Local endpoint address as a tuple
"""
if not self._local_address:
self._local_address = self.sock.getsockname()
if len(self._local_address) == 4:
self._local_address = self._local_address[:2]
return self._local_address
@property
def peer_address(self):
"""
Peer endpoint address as a tuple
"""
if not self._peer_address:
self._peer_address = self.sock.getpeername()
if len(self._peer_address) == 4:
self._peer_address = self._peer_address[:2]
return self._peer_address
def opened(self):
"""
Called by the server when the upgrade handshake
has succeeeded.
"""
pass
def close(self, code=1000, reason=''):
"""
Call this method to initiate the websocket connection
closing by sending a close frame to the connected peer.
The ``code`` is the status code representing the
termination's reason.
Once this method is called, the ``server_terminated``
attribute is set. Calling this method several times is
safe as the closing frame will be sent only the first
time.
.. seealso:: Defined Status Codes http://tools.ietf.org/html/rfc6455#section-7.4.1
"""
if not self.server_terminated:
self.server_terminated = True
self._write(self.stream.close(code=code, reason=reason).single(mask=self.stream.always_mask))
def closed(self, code, reason=None):
"""
Called when the websocket stream and connection are finally closed.
The provided ``code`` is status set by the other point and
``reason`` is a human readable message.
.. seealso:: Defined Status Codes http://tools.ietf.org/html/rfc6455#section-7.4.1
"""
pass
@property
def terminated(self):
"""
Returns ``True`` if both the client and server have been
marked as terminated.
"""
return self.client_terminated is True and self.server_terminated is True
@property
def connection(self):
return self.sock
def close_connection(self):
"""
Shutdowns then closes the underlying connection.
"""
if self.sock:
try:
self.sock.shutdown(socket.SHUT_RDWR)
self.sock.close()
except:
pass
finally:
self.sock = None
def ping(self, message):
"""
Send a ping message to the remote peer.
The given `message` must be a unicode string.
"""
self.send(PingControlMessage(message))
def ponged(self, pong):
"""
Pong message, as a :class:`messaging.PongControlMessage` instance,
received on the stream.
"""
pass
def received_message(self, message):
"""
Called whenever a complete ``message``, binary or text,
is received and ready for application's processing.
The passed message is an instance of :class:`messaging.TextMessage`
or :class:`messaging.BinaryMessage`.
.. note:: You should override this method in your subclass.
"""
pass
def unhandled_error(self, error):
"""
Called whenever a socket, or an OS, error is trapped
by ws4py but not managed by it. The given error is
an instance of `socket.error` or `OSError`.
Note however that application exceptions will not go
through this handler. Instead, do make sure you
protect your code appropriately in `received_message`
or `send`.
The default behaviour of this handler is to log
the error with a message.
"""
logger.exception("Failed to receive data")
def _write(self, b):
"""
Trying to prevent a write operation
on an already closed websocket stream.
This cannot be bullet proof but hopefully
will catch almost all use cases.
"""
if self.terminated or self.sock is None:
raise RuntimeError("Cannot send on a terminated websocket")
self.sock.sendall(b)
def send(self, payload, binary=False):
"""
Sends the given ``payload`` out.
If ``payload`` is some bytes or a bytearray,
then it is sent as a single message not fragmented.
If ``payload`` is a generator, each chunk is sent as part of
fragmented message.
If ``binary`` is set, handles the payload as a binary message.
"""
message_sender = self.stream.binary_message if binary else self.stream.text_message
if isinstance(payload, basestring) or isinstance(payload, bytearray):
m = message_sender(payload).single(mask=self.stream.always_mask)
self._write(m)
elif isinstance(payload, Message):
data = payload.single(mask=self.stream.always_mask)
self._write(data)
elif type(payload) == types.GeneratorType:
bytes = next(payload)
first = True
for chunk in payload:
self._write(message_sender(bytes).fragment(first=first, mask=self.stream.always_mask))
bytes = chunk
first = False
self._write(message_sender(bytes).fragment(last=True, mask=self.stream.always_mask))
else:
raise ValueError("Unsupported type '%s' passed to send()" % type(payload))
def _get_from_pending(self):
"""
The SSL socket object provides the same interface
as the socket interface but behaves differently.
When data is sent over a SSL connection
more data may be read than was requested from by
the ws4py websocket object.
In that case, the data may have been indeed read
from the underlying real socket, but not read by the
application which will expect another trigger from the
manager's polling mechanism as if more data was still on the
wire. This will happen only when new data is
sent by the other peer which means there will be
some delay before the initial read data is handled
by the application.
Due to this, we have to rely on a non-public method
to query the internal SSL socket buffer if it has indeed
more data pending in its buffer.
Now, some people in the Python community
`discourage <https://bugs.python.org/issue21430>`_
this usage of the ``pending()`` method because it's not
the right way of dealing with such use case. They advise
`this approach <https://docs.python.org/dev/library/ssl.html#notes-on-non-blocking-sockets>`_
instead. Unfortunately, this applies only if the
application can directly control the poller which is not
the case with the WebSocket abstraction here.
We therefore rely on this `technic <http://stackoverflow.com/questions/3187565/select-and-ssl-in-python>`_
which seems to be valid anyway.
This is a bit of a shame because we have to process
more data than what wanted initially.
"""
data = b""
pending = self.sock.pending()
while pending:
data += self.sock.recv(pending)
pending = self.sock.pending()
return data
def once(self):
"""
Performs the operation of reading from the underlying
connection in order to feed the stream of bytes.
We start with a small size of two bytes to be read
from the connection so that we can quickly parse an
incoming frame header. Then the stream indicates
whatever size must be read from the connection since
it knows the frame payload length.
It returns `False` if an error occurred at the
socket level or during the bytes processing. Otherwise,
it returns `True`.
"""
if self.terminated:
logger.debug("WebSocket is already terminated")
return False
try:
b = self.sock.recv(self.reading_buffer_size)
# This will only make sense with secure sockets.
if self._is_secure:
b += self._get_from_pending()
except (socket.error, OSError, pyOpenSSLError) as e:
self.unhandled_error(e)
return False
else:
if not self.process(b):
return False
return True
def terminate(self):
"""
Completes the websocket by calling the `closed`
method either using the received closing code
and reason, or when none was received, using
the special `1006` code.
Finally close the underlying connection for
good and cleanup resources by unsetting
the `environ` and `stream` attributes.
"""
s = self.stream
self.client_terminated = self.server_terminated = True
try:
if s.closing is None:
self.closed(1006, "Going away")
else:
self.closed(s.closing.code, s.closing.reason)
finally:
self.close_connection()
# Cleaning up resources
s._cleanup()
self.stream = None
self.environ = None
def process(self, bytes):
""" Takes some bytes and process them through the
internal stream's parser. If a message of any kind is
found, performs one of these actions:
* A closing message will initiate the closing handshake
* Errors will initiate a closing handshake
* A message will be passed to the ``received_message`` method
* Pings will see pongs be sent automatically
* Pongs will be passed to the ``ponged`` method
The process should be terminated when this method
returns ``False``.
"""
s = self.stream
if not bytes and self.reading_buffer_size > 0:
return False
self.reading_buffer_size = s.parser.send(bytes) or DEFAULT_READING_SIZE
if s.closing is not None:
logger.debug("Closing message received (%d) '%s'" % (s.closing.code, s.closing.reason))
if not self.server_terminated:
self.close(s.closing.code, s.closing.reason)
else:
self.client_terminated = True
return False
if s.errors:
for error in s.errors:
logger.debug("Error message received (%d) '%s'" % (error.code, error.reason))
self.close(error.code, error.reason)
s.errors = []
return False
if s.has_message:
self.received_message(s.message)
if s.message is not None:
s.message.data = None
s.message = None
return True
if s.pings:
for ping in s.pings:
self._write(s.pong(ping.data))
s.pings = []
if s.pongs:
for pong in s.pongs:
self.ponged(pong)
s.pongs = []
return True
def run(self):
"""
Performs the operation of reading from the underlying
connection in order to feed the stream of bytes.
We start with a small size of two bytes to be read
from the connection so that we can quickly parse an
incoming frame header. Then the stream indicates
whatever size must be read from the connection since
it knows the frame payload length.
Note that we perform some automatic opererations:
* On a closing message, we respond with a closing
message and finally close the connection
* We respond to pings with pong messages.
* Whenever an error is raised by the stream parsing,
we initiate the closing of the connection with the
appropiate error code.
This method is blocking and should likely be run
in a thread.
"""
self.sock.setblocking(True)
with Heartbeat(self, frequency=self.heartbeat_freq):
s = self.stream
try:
self.opened()
while not self.terminated:
if not self.once():
break
finally:
self.terminate()
class EchoWebSocket(WebSocket):
def received_message(self, message):
"""
Automatically sends back the provided ``message`` to
its originating endpoint.
"""
self.send(message.data, message.is_binary)