forked from Megvii-BaseDetection/YOLOX
-
Notifications
You must be signed in to change notification settings - Fork 25
/
voc.py
268 lines (229 loc) · 9.67 KB
/
voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Code are based on
# https://github.com/fmassa/vision/blob/voc_dataset/torchvision/datasets/voc.py
# Copyright (c) Francisco Massa.
# Copyright (c) Ellis Brown, Max deGroot.
# Copyright (c) Megvii, Inc. and its affiliates.
import cv2
import numpy as np
from yolox.evaluators.voc_eval import voc_eval
import os
import os.path
import pickle
import xml.etree.ElementTree as ET
from .datasets_wrapper import Dataset
from .voc_classes import VOC_CLASSES
class AnnotationTransform(object):
"""Transforms a VOC annotation into a Tensor of bbox coords and label index
Initilized with a dictionary lookup of classnames to indexes
Arguments:
class_to_ind (dict, optional): dictionary lookup of classnames -> indexes
(default: alphabetic indexing of VOC's 20 classes)
keep_difficult (bool, optional): keep difficult instances or not
(default: False)
height (int): height
width (int): width
"""
def __init__(self, class_to_ind=None, keep_difficult=True):
self.class_to_ind = class_to_ind or dict(zip(VOC_CLASSES, range(len(VOC_CLASSES))))
self.keep_difficult = keep_difficult
def __call__(self, target):
"""
Arguments:
target (annotation) : the target annotation to be made usable
will be an ET.Element
Returns:
a list containing lists of bounding boxes [bbox coords, class name]
"""
res = np.empty((0, 5))
for obj in target.iter("object"):
difficult = int(obj.find("difficult").text) == 1
if not self.keep_difficult and difficult:
continue
name = obj.find("name").text.lower().strip()
bbox = obj.find("bndbox")
pts = ["xmin", "ymin", "xmax", "ymax"]
bndbox = []
for i, pt in enumerate(pts):
cur_pt = int(bbox.find(pt).text) - 1
# scale height or width
# cur_pt = cur_pt / width if i % 2 == 0 else cur_pt / height
bndbox.append(cur_pt)
label_idx = self.class_to_ind[name]
bndbox.append(label_idx)
res = np.vstack((res, bndbox)) # [xmin, ymin, xmax, ymax, label_ind]
# img_id = target.find('filename').text[:-4]
return res # [[xmin, ymin, xmax, ymax, label_ind], ... ]
class VOCDetection(Dataset):
"""
VOC Detection Dataset Object
input is image, target is annotation
Args:
root (string): filepath to VOCdevkit folder.
image_set (string): imageset to use (eg. 'train', 'val', 'test')
transform (callable, optional): transformation to perform on the
input image
target_transform (callable, optional): transformation to perform on the
target `annotation`
(eg: take in caption string, return tensor of word indices)
dataset_name (string, optional): which dataset to load
(default: 'VOC2007')
"""
def __init__(
self,
data_dir,
image_sets=[('2007', 'trainval'), ('2012', 'trainval')],
img_size=(416, 416),
preproc=None,
target_transform=AnnotationTransform(),
dataset_name="VOC0712",
):
super().__init__(img_size)
self.root = data_dir
self.image_set = image_sets
self.img_size = img_size
self.preproc = preproc
self.target_transform = target_transform
self.name = dataset_name
self._annopath = os.path.join("%s", "Annotations", "%s.xml")
self._imgpath = os.path.join("%s", "JPEGImages", "%s.jpg")
self._classes = VOC_CLASSES
self.ids = list()
for (year, name) in image_sets:
self._year = year
rootpath = os.path.join(self.root, "VOC" + year)
for line in open(
os.path.join(rootpath, "ImageSets", "Main", name + ".txt")
):
self.ids.append((rootpath, line.strip()))
def __len__(self):
return len(self.ids)
def load_anno(self, index):
img_id = self.ids[index]
target = ET.parse(self._annopath % img_id).getroot()
if self.target_transform is not None:
target = self.target_transform(target)
return target
def pull_item(self, index):
"""Returns the original image and target at an index for mixup
Note: not using self.__getitem__(), as any transformations passed in
could mess up this functionality.
Argument:
index (int): index of img to show
Return:
img, target
"""
img_id = self.ids[index]
img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)
height, width, _ = img.shape
target = self.load_anno(index)
img_info = (height, width)
return img, target, img_info, index
@Dataset.resize_getitem
def __getitem__(self, index):
img, target, img_info, img_id = self.pull_item(index)
if self.preproc is not None:
img, target = self.preproc(img, target, self.input_dim)
return img, target, img_info, img_id
def evaluate_detections(self, all_boxes, output_dir=None):
"""
all_boxes is a list of length number-of-classes.
Each list element is a list of length number-of-images.
Each of those list elements is either an empty list []
or a numpy array of detection.
all_boxes[class][image] = [] or np.array of shape #dets x 5
"""
self._write_voc_results_file(all_boxes)
IouTh = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True)
mAPs = []
for iou in IouTh:
mAP = self._do_python_eval(output_dir, iou)
mAPs.append(mAP)
print("--------------------------------------------------------------")
print("map_5095:", np.mean(mAPs))
print("map_50:", mAPs[0])
print("--------------------------------------------------------------")
return np.mean(mAPs), mAPs[0]
def _get_voc_results_file_template(self):
filename = "comp4_det_test" + "_{:s}.txt"
filedir = os.path.join(self.root, "results", "VOC" + self._year, "Main")
if not os.path.exists(filedir):
os.makedirs(filedir)
path = os.path.join(filedir, filename)
return path
def _write_voc_results_file(self, all_boxes):
for cls_ind, cls in enumerate(VOC_CLASSES):
cls_ind = cls_ind
if cls == "__background__":
continue
print("Writing {} VOC results file".format(cls))
filename = self._get_voc_results_file_template().format(cls)
with open(filename, "wt") as f:
for im_ind, index in enumerate(self.ids):
index = index[1]
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in range(dets.shape[0]):
f.write(
"{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n".format(
index,
dets[k, -1],
dets[k, 0] + 1,
dets[k, 1] + 1,
dets[k, 2] + 1,
dets[k, 3] + 1,
)
)
def _do_python_eval(self, output_dir="output", iou=0.5):
rootpath = os.path.join(self.root, "VOC" + self._year)
name = self.image_set[0][1]
annopath = os.path.join(rootpath, "Annotations", "{:s}.xml")
imagesetfile = os.path.join(rootpath, "ImageSets", "Main", name + ".txt")
cachedir = os.path.join(
self.root, "annotations_cache", "VOC" + self._year, name
)
if not os.path.exists(cachedir):
os.makedirs(cachedir)
aps = []
# The PASCAL VOC metric changed in 2010
use_07_metric = True if int(self._year) < 2010 else False
print("Eval IoU : {:.2f}".format(iou))
if output_dir is not None and not os.path.isdir(output_dir):
os.mkdir(output_dir)
for i, cls in enumerate(VOC_CLASSES):
if cls == "__background__":
continue
filename = self._get_voc_results_file_template().format(cls)
rec, prec, ap = voc_eval(
filename,
annopath,
imagesetfile,
cls,
cachedir,
ovthresh=iou,
use_07_metric=use_07_metric,
)
aps += [ap]
if iou == 0.5:
print("AP for {} = {:.4f}".format(cls, ap))
if output_dir is not None:
with open(os.path.join(output_dir, cls + "_pr.pkl"), "wb") as f:
pickle.dump({"rec": rec, "prec": prec, "ap": ap}, f)
if iou == 0.5:
print("Mean AP = {:.4f}".format(np.mean(aps)))
print("~~~~~~~~")
print("Results:")
for ap in aps:
print("{:.3f}".format(ap))
print("{:.3f}".format(np.mean(aps)))
print("~~~~~~~~")
print("")
print("--------------------------------------------------------------")
print("Results computed with the **unofficial** Python eval code.")
print("Results should be very close to the official MATLAB eval code.")
print("Recompute with `./tools/reval.py --matlab ...` for your paper.")
print("-- Thanks, The Management")
print("--------------------------------------------------------------")
return np.mean(aps)