-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkeras_models.py
55 lines (42 loc) · 1.55 KB
/
keras_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from keras.layers import Dense, Dropout, Flatten
from keras.models import Input, Model
import keras
def model1(
input_shape=(None, 20),
hidden_layers=[(4, 0.25), (4, 0.25)],
nlabels=1,
verbose=True,
):
inp = x = Input(batch_shape=input_shape, name='input')
for layer_number, (n_units, dropout_rate) in enumerate(hidden_layers):
name = "hidden_{}".format(layer_number)
x = Dense(n_units, activation='relu', name=name)(x)
if dropout_rate > 0:
name = "dropout_{}".format(layer_number)
x = Dropout(dropout_rate, name=name)(x)
x = Dense(nlabels, activation='linear', name='predictions')(x)
model = Model(inputs=inp, outputs=x)
if verbose: print model.summary()
return model
def model2(
input_shape=(None, 20),
hidden_layers=[(4, 0.25), (4, 0.25)],
nlabels=1,
reg_weight=0.01,
verbose=True,
):
inp = x = Input(batch_shape=input_shape, name='input')
for layer_number, (n_units, dropout_rate) in enumerate(hidden_layers):
name = "hidden_{}".format(layer_number)
x = Dense(n_units,
activation='relu',
name=name,
kernel_regularizer=keras.regularizers.l2(reg_weight),
)(x)
if dropout_rate > 0:
name = "dropout_{}".format(layer_number)
x = Dropout(dropout_rate, name=name)(x)
x = Dense(nlabels, activation='linear', name='predictions')(x)
model = Model(inputs=inp, outputs=x)
if verbose: print model.summary()
return model