-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideoFacial.py
41 lines (31 loc) · 1.06 KB
/
videoFacial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import cv2
#detection de face
face_cascade = cv2.CascadeClassifier("tools/data/haarcascade_frontalface_alt2.xml")
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read("trainner.yml")
cap = cv2.VideoCapture(0)
while(True):
ret, frame = cap.read()
#facial recognition
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5)
for (x, y, w, h) in faces:
print(x,y,w,h)
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
id_, conf = recognizer.predict(roi_gray)
if conf>= 45 and conf <= 85:
print(id_)
img_item = "myface.jpg"
cv2.imwrite(img_item, roi_gray)
color = (255, 0, 0)
stroke = 2
end_cord_x = x + w
end_cord_y = y + h
cv2.rectangle(frame, (x,y), (end_cord_x,end_cord_y),color,stroke)
cv2.imshow('frame',frame)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()