-
Notifications
You must be signed in to change notification settings - Fork 138
/
vqvae.py
199 lines (168 loc) · 7.84 KB
/
vqvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms, datasets
from torchvision.utils import save_image, make_grid
from modules import VectorQuantizedVAE, to_scalar
from datasets import MiniImagenet
from tensorboardX import SummaryWriter
def train(data_loader, model, optimizer, args, writer):
for images, _ in data_loader:
images = images.to(args.device)
optimizer.zero_grad()
x_tilde, z_e_x, z_q_x = model(images)
# Reconstruction loss
loss_recons = F.mse_loss(x_tilde, images)
# Vector quantization objective
loss_vq = F.mse_loss(z_q_x, z_e_x.detach())
# Commitment objective
loss_commit = F.mse_loss(z_e_x, z_q_x.detach())
loss = loss_recons + loss_vq + args.beta * loss_commit
loss.backward()
# Logs
writer.add_scalar('loss/train/reconstruction', loss_recons.item(), args.steps)
writer.add_scalar('loss/train/quantization', loss_vq.item(), args.steps)
optimizer.step()
args.steps += 1
def test(data_loader, model, args, writer):
with torch.no_grad():
loss_recons, loss_vq = 0., 0.
for images, _ in data_loader:
images = images.to(args.device)
x_tilde, z_e_x, z_q_x = model(images)
loss_recons += F.mse_loss(x_tilde, images)
loss_vq += F.mse_loss(z_q_x, z_e_x)
loss_recons /= len(data_loader)
loss_vq /= len(data_loader)
# Logs
writer.add_scalar('loss/test/reconstruction', loss_recons.item(), args.steps)
writer.add_scalar('loss/test/quantization', loss_vq.item(), args.steps)
return loss_recons.item(), loss_vq.item()
def generate_samples(images, model, args):
with torch.no_grad():
images = images.to(args.device)
x_tilde, _, _ = model(images)
return x_tilde
def main(args):
writer = SummaryWriter('./logs/{0}'.format(args.output_folder))
save_filename = './models/{0}'.format(args.output_folder)
if args.dataset in ['mnist', 'fashion-mnist', 'cifar10']:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
if args.dataset == 'mnist':
# Define the train & test datasets
train_dataset = datasets.MNIST(args.data_folder, train=True,
download=True, transform=transform)
test_dataset = datasets.MNIST(args.data_folder, train=False,
transform=transform)
num_channels = 1
elif args.dataset == 'fashion-mnist':
# Define the train & test datasets
train_dataset = datasets.FashionMNIST(args.data_folder,
train=True, download=True, transform=transform)
test_dataset = datasets.FashionMNIST(args.data_folder,
train=False, transform=transform)
num_channels = 1
elif args.dataset == 'cifar10':
# Define the train & test datasets
train_dataset = datasets.CIFAR10(args.data_folder,
train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(args.data_folder,
train=False, transform=transform)
num_channels = 3
valid_dataset = test_dataset
elif args.dataset == 'miniimagenet':
transform = transforms.Compose([
transforms.RandomResizedCrop(128),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# Define the train, valid & test datasets
train_dataset = MiniImagenet(args.data_folder, train=True,
download=True, transform=transform)
valid_dataset = MiniImagenet(args.data_folder, valid=True,
download=True, transform=transform)
test_dataset = MiniImagenet(args.data_folder, test=True,
download=True, transform=transform)
num_channels = 3
# Define the data loaders
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset,
batch_size=args.batch_size, shuffle=False, drop_last=True,
num_workers=args.num_workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=16, shuffle=True)
# Fixed images for Tensorboard
fixed_images, _ = next(iter(test_loader))
fixed_grid = make_grid(fixed_images, nrow=8, range=(-1, 1), normalize=True)
writer.add_image('original', fixed_grid, 0)
model = VectorQuantizedVAE(num_channels, args.hidden_size, args.k).to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# Generate the samples first once
reconstruction = generate_samples(fixed_images, model, args)
grid = make_grid(reconstruction.cpu(), nrow=8, range=(-1, 1), normalize=True)
writer.add_image('reconstruction', grid, 0)
best_loss = -1.
for epoch in range(args.num_epochs):
train(train_loader, model, optimizer, args, writer)
loss, _ = test(valid_loader, model, args, writer)
reconstruction = generate_samples(fixed_images, model, args)
grid = make_grid(reconstruction.cpu(), nrow=8, range=(-1, 1), normalize=True)
writer.add_image('reconstruction', grid, epoch + 1)
if (epoch == 0) or (loss < best_loss):
best_loss = loss
with open('{0}/best.pt'.format(save_filename), 'wb') as f:
torch.save(model.state_dict(), f)
with open('{0}/model_{1}.pt'.format(save_filename, epoch + 1), 'wb') as f:
torch.save(model.state_dict(), f)
if __name__ == '__main__':
import argparse
import os
import multiprocessing as mp
parser = argparse.ArgumentParser(description='VQ-VAE')
# General
parser.add_argument('--data-folder', type=str,
help='name of the data folder')
parser.add_argument('--dataset', type=str,
help='name of the dataset (mnist, fashion-mnist, cifar10, miniimagenet)')
# Latent space
parser.add_argument('--hidden-size', type=int, default=256,
help='size of the latent vectors (default: 256)')
parser.add_argument('--k', type=int, default=512,
help='number of latent vectors (default: 512)')
# Optimization
parser.add_argument('--batch-size', type=int, default=128,
help='batch size (default: 128)')
parser.add_argument('--num-epochs', type=int, default=100,
help='number of epochs (default: 100)')
parser.add_argument('--lr', type=float, default=2e-4,
help='learning rate for Adam optimizer (default: 2e-4)')
parser.add_argument('--beta', type=float, default=1.0,
help='contribution of commitment loss, between 0.1 and 2.0 (default: 1.0)')
# Miscellaneous
parser.add_argument('--output-folder', type=str, default='vqvae',
help='name of the output folder (default: vqvae)')
parser.add_argument('--num-workers', type=int, default=mp.cpu_count() - 1,
help='number of workers for trajectories sampling (default: {0})'.format(mp.cpu_count() - 1))
parser.add_argument('--device', type=str, default='cpu',
help='set the device (cpu or cuda, default: cpu)')
args = parser.parse_args()
# Create logs and models folder if they don't exist
if not os.path.exists('./logs'):
os.makedirs('./logs')
if not os.path.exists('./models'):
os.makedirs('./models')
# Device
args.device = torch.device(args.device
if torch.cuda.is_available() else 'cpu')
# Slurm
if 'SLURM_JOB_ID' in os.environ:
args.output_folder += '-{0}'.format(os.environ['SLURM_JOB_ID'])
if not os.path.exists('./models/{0}'.format(args.output_folder)):
os.makedirs('./models/{0}'.format(args.output_folder))
args.steps = 0
main(args)